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Abstract

Why do national trends in house prices spread more to some cities than to others? This
paper proposes an explanation of house price contagion based on migration spillovers between
U.S. cities: Increases in house prices as a result of local economic shocks and housing supply
constraints drive out-migration to other cities. These migration flows are more likely to
affect cities with stronger pre-existing migration links to the origin cities, and increase house
prices at these destinations. I use the network structure of inter-city migration to develop
an instrument for identifying causal spillover effects between cities: I find that an increase
in other cities’ house prices by 10% in the long run causes a 6.3% house price move in a
city exposed to the shock through migration links. I show that migration spillovers from
the effect of interest rate declines on house prices in other cities can explain 32% of the
cross-sectional variation in house price growth during the run-up to the housing boom of the
2000s. To quantify the effect of changes in migration costs and housing supply constraints on
these house price spillovers, I develop and estimate a dynamic spatial equilibrium model that
incorporates forward-looking migration choices. After estimating this model with U.S. data,
I show that lower migration costs substantially reduce the dispersion in house price growth:
without worker mobility, the spread in house price growth across cities in response to wage
shocks would be 65-70% larger. Moreover, declines in worker mobility increase the impact of
housing policy on the distribution of house price growth across cities.
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1 Introduction

House price growth during national boom and bust cycles varies greatly across cities in the U.S.
During the 2000-2007 housing boom, real house prices in Boise, ID, grew by 41%, while house
price growth in similarly sized Midwestern cities like Wichita, KS, or Jackson, MS, was only 2%
and 9%. Such large cross-sectional differences are not unusual: the spread in 2000-2007 real house
price growth between 0% at the 10th percentile and 91% at the 90th percentile is far larger than
the national average of 40%1 that attracted substantial policy attention. Even after accounting
for the direct effect of land constraints and their interaction with national macroeconomic trends,
these geographic differences are substantial as Panel (a) of Figure 1 shows. Spatial gaps in cities’
co-movement with national house price trends also persist over longer time periods. The map in
Panel (b) of Figure 1 shows the local correlation with the national cycle (the house price “beta”)
over the 1990-2017 period, which ranges from 0.4 at the 10th percentile to 1.9 at the 90th. Why
do national cycles in house prices affect some U.S. cities more than others? How do shocks to local
economies spread between cities? And why did some cities experience high house price growth
during the 2000s and 2010s even in the absence of large local economic shocks?

This paper aims to answer these questions by providing evidence for the importance of migration
as an important causal channel for spillovers between cities. In particular, I make two contributions:
First, I show new empirical evidence that house price growth in one city can have a causal spillover
effect on other cities through migration flows, which partly explains house price growth in cities that
don’t experience direct economic shocks. Second, I construct and estimate a model of location
choices with forward-looking agents that allows me to quantify the role that mobility plays in
mitigating extreme house price growth outcomes across cities.

The proposed mechanism for why house price growth spills over to some cities more than to
others is the following: First, economic shocks benefit one group of workers in a city and drive up
local house prices if housing supply is constrained. This causes other workers to leave the city in
pursuit of more affordable housing elsewhere. These outflows are more likely to affect cities with
strong migration links to the origin city – and the increased population inflows drive up those
destinations’ housing demand and prices. As a result of such migration spillovers, high house
price growth may spread even to cities that do not receive fundamental shocks themselves, but are
highly exposed to outflows from cities that do. Returning to the example from above, the high
house price growth in Boise, ID, can in part be explained by the fact that its population grew by
13% over 2000-2007, while that of Wichita, KS, and Jackson, MS, stagnated. One reason for this
is that Boise is an important destination for people leaving expensive booming cities in California,
such as Los Angeles, San Francisco, or San Jose. These three metro areas alone were responsible
for 2000-2007 net migration into Boise corresponding to almost 4% of its population.2

In the first part of the paper, I start by establishing stylized facts about the networks of
migration between U.S. cities: I show that, for most cities, only a small number of other cities
are destinations or origins for substantial numbers of migrant outflows or inflows. Moreover, this
set of relevant other cities does not change much over time. This persistence can be explained
by migration costs that are a function of enduring city characteristics. As a case study of how

1Averages and percentiles are computed across population-weighted commuting zones.
2For comparison, in the 1990-1999 period that preceded most of the housing boom, Boise, ID, was among the Top

50 migration destinations for the Los Angeles, Oakland-San Francisco, San Jose, and Santa Barbara metro areas.
In contrast, during the same time period, Wichita’s and Jackson’s highest destination rankings for any Gyourko
et al. (2013) “superstar” city were 81st and 173rd, respectively, and they saw 2000-2007 population growth of -2%
and 1%, respectively.
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Figure 1: House price growth and beta. Panel (a) shows a map of commuting zone average (cumulative)
real house price growth over 2000-2007, residualized with regard to the effect of annual time trends, local land
constraints, and the interaction between them in a population-weighted regression. Panel (b) shows house price
growth “betas” for the annual house price growth effect in each period, computed as the slope coefficient in a
regression of each CZ’s annual house price growth series 1990-2017 from Federal Housing Finance Authority data
on the series of leave-one-out average growth in each year.

(a) Resid. real house price growth 2000-2007 (b) House price growth beta 1990-2017

migration spillovers between cities might operate, I demonstrate that the ex ante defined top
destinations of migrants from booming “superstar” cities (Gyourko et al., 2013) were likely to
experience particularly large housing booms and high population growth during the housing cycle
of the early 2000s.

Then, I develop an empirical approach to identify causal reduced-form spillover effects between
cities. I use the network structure of migration flows to measure each city’s migration exposure
to other cities’ housing markets and estimate spillover effects from the degree to which a focal
city’s house price growth co-moves with house price shocks in other migration-linked cities. To
identify exogenous variation in house prices in a city’s migration network, I construct an instrument
consisting of Bartik (1991) type wage shift-share shocks interacting with land constraints in other
cities – and exposure to those shocks through the same migration network links. In the estimation
I control for any direct effects of those shift-share shocks on each focal city to ensure that any
house price effects come only from indirect spillovers via migration links.

Using this “network IV” approach, I find that causal network spillover effects are sizeable. In
the long run, a 10% increase in house prices in all other migration-connected cities results in a
6.3% increase in house prices and a 1.9% increase in the population of a city affected through the
migration spillover channel. The effects on population and house prices increase for two years after
the initial shock before levelling off at these long-run values. These spillover effects on house prices
are stronger in cities that are more land-constrained: an additional 10 ppt of local land unavailable
for construction increases the spillover effect from a 10% house price shock by 0.9 ppt.

In addition, I estimate the spillover effects on mortgage credit and construction – which support
the proposed migration mechanism. Mortgage loan originations are significantly higher for several
years in response to a migration spillover shock. Furthermore, the house price response to migration
spillovers can partly be explained by congestion in the construction sector: construction permit
volume responds to migration spillovers only with a delay and remains 31% above its initial level
even after 5 years in response to a 10% house price shock in other cities. As additional evidence
of construction lags, I show that housing vacancies decline in the cities most affected by housing
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booms in the 2000s and 2010s while regional time-to-build delays in housing construction increase
procyclically.

How important are these migration spillover effects? I quantify the spillovers between cities
that arise from two different shocks that the literature has shown to have had direct effects on
house prices in the run-up to the housing boom of the 2000s:3 (1) Declining real interest rates,
and (2) industry wage shocks. I show that these shocks had indirect spillover effects on cities that
have strong migration links to cities that received large direct shocks. Spillovers from interest rate
shocks affecting other cities can explain 32% of the cross-sectional variation in actual house price
growth, while spillovers from wage shocks to other cities explain 12%. I also provide new evidence
that migration links individually outperform in predicting high inter-city house price correlations
when compared to measures of physical distance, social network links, trade flows, or similarity in
industry structure between cities.

The second part of the paper focuses on how the migration spillovers between linked cities affect
the aggregate cross-sectional pattern of house price growth in the U.S. While the reduced-form
estimates take structural parameters as given, the recent decline in U.S. domestic migration rates
and increase in housing supply constraints raise the question of how changes in mobility or house
price elasticities affect house price dynamics in the presence of migration spillovers.4 To study
these counterfactual questions, I develop and estimate a dynamic spatial equilibrium model that
allows me to quantify the role of migration costs and housing supply constraints in generating the
observed distribution of house price growth. The model allows for heterogeneity in housing supply
elasticities across cities, forward-looking location choices by migrants, and heterogeneity in location
preferences between education groups. By capturing the degree to which cities are interconnected,
this model can account for rich geographic differences in spillovers of economic shocks. I use
instruments based on wage shift-share shocks to identify the key parameters characterizing location
choices, industry choices, labor demand and heterogeneity in housing supply constraints from the
structural equations of this model.

An important estimation challenge is that moving costs mean that workers cannot re-optimize
their location costlessly as circumstances change. As a result, moving decisions can depend on
the unobserved expected option value of being in a particular city at a particular point in time.
Not accounting for these expectations about future opportunities in different cities could lead to
omitted variable bias in estimating the sensitivity of location choices to observable characteristics.
In estimating the location choice parameters, I therefore use a “renewal state” approach, which
differences out the future option values of locations: I assume that the future utility of being in a
particular location is independent of the migration path taken to get there. As a result, comparing
characteristics between two paths that end up in the same location holds the option values at the
end point constant, which I exploit in the estimation of the location choice sensitivity parameters.

To estimate this model in a recent U.S. context, I have to overcome the challenge that migration
flow data by education group is noisy and only available for 2005-2017. I reduce noise in the
migration data by using an empirical Bayes shrinkage estimator to combine raw survey data from
the American Community Survey with a LASSO prediction of smoothed migration flows. I also
use the model structure together with observable aggregate data to impute historical flows by

3See, e.g. Saks (2008) or Saiz (2010) for examples showing direct effects of industry shift-share shocks on local
house prices, and Himmelberg et al. (2005) or Glaeser et al. (2012) for studies showing a direct effect of interest
rate changes in conjunction with land constraints on local house prices.

4See Molloy and Smith (2019) for a summary of the evidence showing a secular decline in migration, and Ganong
and Shoag (2017) or Gyourko et al. (2019) for measures that show increases in housing supply constraints.
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education group for the year 2000.

Last, I use the model to conduct counterfactuals for the effect of changes in migration costs and
housing supply constraints. I quantify the counterfactual impact of wage shocks on the distribution
of house price growth across cities during the 2000-2007 and 2012-2017 housing boom periods,
under different assumptions about migration costs or housing supply constraints. I find that
migration spillovers play an important role in spatially distributing the house price effects of
concentrated economic shocks. My counterfactual simulations show that less mobility results in
more dispersed house price growth: with prohibitive migration costs, – no mobility – measures of
the spread in house price growth across cities in response to wage shocks would be 65-70% larger
than under observed baseline migration costs. That is, fewer cities experience extremely high (or
low) house price growth after a positive shock if workers can move more easily between cities. I
show that this effect on the dispersion of of house price growth is qualitatively similar to that of
a reduction of all above-median housing supply constraints to the median. Mobility also affects
the distribution of house price effect betas: higher costs of moving between cities lead to heavier
tails of cities with house price growth that is highly positively or negatively correlated with the
national trend.

Differences in how mobile workers are across cities also interact with the effectiveness of housing
policy: decreases in mobility almost universally increase the degree to which reductions in supply
constraints decrease the dispersion of house price growth. If the secular decline in observed U.S.
inter-city mobility over the last three decades5 represents a fundamental shift in the ability of
workers to move, this analysis implies that policy changes to reduce housing supply constraints
would be more effective today at reducing the dispersion in house price outcomes than in the past.
Conversely, policies that enable greater worker mobility through lower migration costs can mitigate
the impact of tighter housing supply constraints that widen the gap in house price growth across
cities.

These findings have important implications for policy-makers and stakeholders in real estate
markets: In the aggregate, declines in workers’ ability to move across cities are predicted to lead
to greater cross-sectional differences in house price growth between cities, including more housing
markets with relatively large house price increases. At the same time, my analysis suggests for
individual housing markets that migration links to other cities that are experiencing economic
booms help to predict increases in local housing demand; and being able to better predict local
surges in demand can benefit both real estate investors and urban planners trying to predict
housing needs and zoning requirements. Moreover, to the degree that the migration spillover
mechanism explains part of the volatility in house prices in U.S. cities like Phoenix, AZ, or Boise,
ID, it also informs financial regulators and macroeconomic policy-makers evaluating to what degree
local asset price changes are the result of speculation or credit supply changes rather than driven
by demand fundamentals.6

Related literature. This work builds on a number of papers that have documented housing
market connections between cities: DeFusco et al. (2015) show that contagion appears to have
played a role in the expansion of the 2000s boom across local housing markets. In contrast to this
paper, they focus on closest neighbors and do not consider migration as an important spillover
channel in their analysis. My analysis also complements Chinco and Mayer (2016), who show
that out-of-town speculators, especially coming from large cities, play an important role in driving

5See Panel (a) of Appendix Figure A1 for a plot of the 1990-2017 trend in gross migration rates.
6See, e.g. the “Financial Stability Report” by Board of Governors of the Federal Reserve System (2020) for an

example of national policy-makers tracking house price increases in local markets.
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house price appreciation in the mid-2000s. If spillover migrants are accompanied by out-of-town
speculators from large cities, my paper provides one explanation for why some cities are more
likely to be the target of out-of-town speculators than others. Moreover, the cross-city migration
mechanism that I am studying is similar to the within-city gentrification dynamics shown by
Guerrieri et al. (2013). They show that neighborhoods that are closer to rich neighborhoods are
more likely to experience house price increases after positive economic shocks to a city, providing
implicit evidence of within-city migration as the driving force of this dynamic. In contrast, I study
the spillover effect of positive shocks across proximate cities, where “proximity” is defined by the
ease of migration. Bailey et al. (2018a) also study network connections between cities – in the form
of social media friendships – and their effect on individual house purchases. However, they focus
on heterogeneity in online social networks among different residents within one county. In this
paper, I try to explain overall house price dynamics for a large network of cities using a mechanism
explicitly focusing on the effect of movers, which may complement spillovers through social media
connections. Cotter et al. (2015) document large correlations in housing returns between cities, and
Sinai and Souleles (2013) showed that there are positive house price correlations across migration-
linked cities. I provide a mechanism for how migration links can cause house price correlations, as
well as new evidence that compares migration links to other measures of inter-city links.

This paper is also closely tied to a large literature on differences in house price growth and
mortgage credit origination across geographic areas.7 For example, a rapid expansion in mortgage
credit in some areas that drove house price increases during the run-up to the housing boom of the
2000s has been tied to the presence of subprime borrowers (Mian and Sufi, 2009), bank deregu-
lation (Favara and Imbs, 2015), credit supply subsidies from government-sponsored enterprises in
conjunction with differences in financial integration (Loutskina and Strahan, 2015), and changes in
conforming-loan limits (Adelino et al., 2012). Moreover, regional differences in house price growth
have been shown to arise from the interaction of national changes in real interest rates with local
housing supply constraints (Himmelberg et al., 2005; Glaeser et al., 2012), and a concentration
of high-income households in supply-constrained cities (Gyourko et al., 2013). This paper shows
that all of these shocks can have indirect effects through migration spillovers on other cities that
are not directly exposed to them. At the same time, I propose differences in migration exposure
to house price and credit shocks in other cities as a new explanation for the geographic variation
in the expansion of mortgage credit and house price growth.

In this paper, I also add to a literature that links migration flows and house price dynamics. For
example, Howard (2020) shows that migration flows into a city stimulate the local economy and
house prices, and Boustan (2010) shows that the arrival of Blacks during the Great Migration had a
negative effect on city housing demand by whites. While this literature focuses on the effect on the
city receiving migrants, I explicitly connect house price dynamics in origin and destination cities
and quantify the aggregate effects of such spillovers during historical boom periods. Moreover, my
model allows me to quantify the role of changes in structural parameters, such as migration costs,
in changing house price dynamics, which is not possible in reduced-form approaches.

I also contribute to a literature on the methodology of spatial equilibrium and dynamic discrete
choice models: my dynamic model builds on forward-looking location choice models like those used
by Diamond et al. (2017) and Almagro and Domı́nguez-Iino (2020), as well as the renewal action
approach for estimating location choice parameters as applied by Scott (2013), and generalized

7There is also a voluminous literature trying to explain variations in the housing cycle within cities (Mian and
Sufi, 2009), or the size of the national cycle (e.g Landvoigt (2017); Kaplan et al. (2020)) which does not explicitly
focus on the cross-sectional geography of differences in the housing cycle across cities.
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by Kalouptsidi et al. (2020). My method for inferring stationary equilibria in spatial equilibrium
models with migration costs combines methods developed by Ahlfeldt et al. (2020) and the “dy-
namic hat” simulation approach in Caliendo et al. (2019), to obtain transition paths to steady
states for dynamic forward-looking spatial equilibrium models. While the intuition that shocks
can “spill over” between cities is common to many papers with spatial equilibrium dynamics and
location choice, my contribution consists of both quantifying the size of these spillover effects
through a migration channel, and applying this intuition to understanding historical patterns of
house price contagion and cross-sectional variation in housing booms, where migration patterns
have previously not been considered as a driving force.

2 U.S. City Migration Networks: Descriptive Evidence

This section shows that there are meaningful differences in migration networks between U.S. cities,
what drives these differences, and that they are persistent over time. Moreover, I show that
identifying cities ex ante that are likely destinations for migration flows from cities that are likely
to receive large positive economic shocks is predictive of high population and house price growth
during the housing boom of the 2000s.

2.1 Migration networks between U.S. cities are sparse and persistent

When I am talking about the ”U.S. city migration network”, I am referring to the size of migration
links between commuting zone (“city”) nodes. These links are characterized by the number of
migrants flowing from an origin city to a destination city. Moreover, we can distinguish between
inflow and outflow networks, which can be very different for the same reference city.

To illustrate the geographic variation in migration networks, Figure 2 shows the migration
network for the 2000-2007 housing boom period for inflows into Boston (left panel) and Dallas
(right panel). For comparison, all inflows have been scaled to be shares of all inflows into the city
from the continental U.S., with darker colors indicating a greater share of inflows coming from
that origin commuting zone. Comparing the two maps, four things are immediately obvious: (1)
Larger population centers naturally have a greater migration impact on other cities. (2) Migration
networks can differ substantially between cities. (3) Migration flows are not limited to within-region
flows, as many strong links extend to the farthest corners of the U.S. (4) Migration networks are
sparse – that is, a majority of possible CZ-to-CZ links are too small to be recorded in the IRS
data, while large flows concentrate into a small number of origin CZs for each destination. To
show that these patterns are not unique to Boston and Dallas, Appendix Figure A2 shows the
migration networks for a number of other large CZs.

Number of migration links. We can also document these connectivity patterns more sys-
tematically by computing the average number of inflow links that cities have, where a “link” is
defined as an annual migrant inflow from another city recorded by the IRS.8 These network char-
acteristics are shown in Table 1 for the 1990-2010 period.9 In the first row, I document that CZs
on average receive migrants from 30 other CZs per year from a potential total of 722 CZs in the

8The threshold for the IRS to record the name of origin cities are flows corresponding to at least 10 tax returns.
9In 2011, the IRS changed its methodology for computing gross migration rates, leading to noise in the data,

which is why I do not include post-2011 here. However, net migration rates do not seem to be affected by the
methodology change, which is why I use data through 2017 in the regressions.
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continental U.S.,10 which shows that migration networks are sparse. That is, sizeable migration
only occurs between particular city pairs rather than being widely dispersed.

Persistence. These migration links are also highly persistent over time – indicating that they
are not driven by temporary shocks: even at a 10-year horizon, on average 80% of the origin CZs
of incoming flows remain the same. Moreover, persistent migration networks do not only exist at
a local level: the second and third rows of Table 1 show that, in an average year, cities receive
inflows from 26 CZs that are at least 50 miles away, and even at 150 miles distance, the average
city still has 21 links, of which 62% persist 10 years later. Comparing median and mean links, we
can see that migration connectivity with other cities is skewed: many cities only have a handful
of long-distance migration links, while a few (usually large) cities are widely connected.

Characteristics of movers. In order to understand which population groups are driving
U.S. migration patterns in general, I consider evidence from the Current Population Survey in
Appendix H.3 on the demographics of inter-county movers in the U.S. I find that inter-county
migration is driven mainly by young workers, and by workers who are employed. In contrast, older
age groups’ share of migration is less than their population share and retirees make up less than
10% of intercounty movers.

2.2 Migration links are predicted by city similarity

Why are migration networks persistent? One explanation may be that migrants belonging to a
particular demographic group are attracted to cities where other members of their group have
gone before. There is a wealth of evidence that this is the case for international migration. For
instance, Bartel (1989) shows that immigrants to the U.S. tend to cluster in cities that already
have a high share of immigrants of the same ethnicity.11 A similar mechanism of path dependence
has been found for historical domestic migration patterns (see, e.g. Boustan (2010)).12 A possible
explanation for persistent migration patterns may be time-invariant city characteristics that shape
both historical and later moving patterns in a similar way. For instance, Fishback et al. (2006)
show that natural amenities played a role in U.S. domestic migration in the 1930s.13

As I am not aware of a recent study that systematically explores the correlates of migration
costs over the last two decades, I analyse whether this is the case in the U.S. in this section.

Migration gravity model. There are two separate descriptive questions to answer: (1)
What factors correlate with a city’s attractiveness to migrants from any location? (2) Holding
city attractiveness constant, which cities are more likely to be part of the same migration network
than others?

10Based on 1990 CZ definitions.
11In fact, this insight has seeded a large empirical literature in economics which uses historical immigration flows

between geographies as predictors of later flows (e.g. Card (2001)). One proposed explanation for why immigrants
follow in each other’s footsteps is that group connections to previous migrants decrease uncertainty about the
destination and lower moving and adjustment costs (Carrington et al., 1996).

12Boustan (2010) uses county economic characteristics in 1940-1970 to predict out-migration from the U.S. South
and combines this with historical migration patterns to predict inflows into Northern cities. She explains the
persistence in migrant settlement patterns as being at least partially due to fixed train routes and community
networks.

13For the more recent period of the 1990s, Glaeser and Shapiro (2001) find that cities with warmer and drier
weather were able to attract more migrants, and Glaeser et al. (2001) show that, in addition to weather, U.S.
city growth since the 1970s also correlates with consumption amenities, such as coastal proximity, restaurants, and
performance venues.
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To answers these questions, I first estimate a simple gravity model of migration of the form

lnMigi→jt = αt + γ1 ln distij + β′‖Xj −Xi‖︸ ︷︷ ︸
Migration cost

+ θit + θjt︸ ︷︷ ︸
City attractiveness

+εijt (1)

where I decompose log annual migration flows between each city pair into a national trend αt,
various bilateral distance and difference parameters that capture the cost of migrating between
cities; and fixed effects that capture the overall attractiveness of a city, i.e. its overall tendency
to receive or send migrants. I estimate this equation using Poisson Pseudo-Maximum Likelihood
on the total sample of 1990-2017 IRS migration flows between CZs. To explore differences by
education group, I also estimate the migration cost parameters on a shorter 2005-2017 panel of
flows by college and non-college workers, which is imputed from ACS and IRS data as described
in Appendix F.6.

Migration cost determinants. Migration costs are parameterized to depend on various
bilateral components. The most basic proxy for geographical distance is log physical distance
between origin and destination. In addition, I allow migration costs to depend on cities being
in the same state or Census region, as well as interactions of these institutional boundaries and
physical distance. Informed by the migration literature discussed above, I also include absolute
differences between cities in the population share of non-mainline Christian denomination14 and
ethnicity shares (as proxies for culture), water access and mean January temperatures (climate
and natural amenities), and 2-digit industry shares (economic structure).15

The estimated coefficients for the migration cost determinants are shown in Table 2, with
negative coefficients indicating that greater distance or absolute difference imposes a greater cost
on migrants. Overall, almost all the included city distances and differences have a significant
negative effect on the ease of bilateral migration.16 This rationalizes persistent differences in
migration networks between cities: for a given level of city attractiveness, migrants are more likely
to flow to and from cities that are more similar, or closer to one another.17

Heterogeneity in migration costs. The results by education group (see columns 2 and
3) highlight that the aggregate migration patterns obscure differences between groups. I find
that physical distance and state / regional boundaries matter more for non-college workers.18

Conversely, college workers seem to put a greater weight on similar industry composition and the
prevalence of non-traditional religious denominations. In Appendix Section H.1, I additionally
look at the drivers of variation over time in flows between cities and find evidence that it is also
important to account for group differences when looking at the response of flows to changes in city

14This measure of cultural differences is suggested by Saiz (2010), who uses it as a proxy for a culture that is less
likely to impose regulatory restrictions on housing supply.

15Both differences in ethnicity shares and industry shares are computed as vector distances between the origin
and destination cities’ vectors of shares.

16In particular, the results for the long sample in the first column show that physical distance and crossing state
boundaries significantly increase migration costs, albeit physical distance matters less conditional on leaving the
state or region. Migrants are also more likely to move to areas that are culturally similar as measured by the
differences in the ethnic composition and the prevalence of non-mainline Christian denominations; and workers find
it easier to move to areas with a similar industry composition. Differences in local access to the water increase
migration costs.

17The only exception is that migrants were actually more likely to move between cities with greater differences in
January temperatures, perhaps reflecting the large ongoing movement towards the warmer regions of the American
South (Glaeser and Shapiro, 2001).

18This is in line with findings by Molloy et al. (2011) that interstate migration rates increase with education
during the 1980-2010 period.
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characteristics. In the quantitative model estimated in Section 6, I will account for this subgroup
heterogeneity, as well as the effect of observed and unobserved changes in amenities when trying
to estimate the location choice parameters.

As an example of the estimated effects of differences between cities on migration, consider
again migration into Boise, ID: Its industry structure is much more similar to that of Los Angeles
than the difference for an average city pair.19 The reason is that both cities have an unusually
large share of local employment in business services industries, such as finance and information
technology, which represent 24% of year 2000 employment in Boise, and 29% in Los Angeles. In
contrast, these industries only represent 14% of employment in the average commuting zone.20

The predicted effect of this similarity in industry structure on migration, based on the estimates in
Table 2, is that college-educated migration flows from Los Angeles to Boise should be 31% times
larger than for a city pair with average industry structure differences.21 Similarly, the shorter
distance from Los Angeles is predicted to lead to 46% greater flows of college-educated workers to
Boise, ID, than to Wichita, KS, for example.22 Of course, part of the reason for greater migration
links between particular city pairs that is not captured in this regression may be historical path
dependence: migration flows in the past – whatever their cause – lead to greater family and social
connections between cities, and more information about opportunities at the destination, and
thereby make it a more likely destination in the future. For example, already in 1980, 7% of all
people in Idaho (where Boise is by far the largest city), were born in non-neighboring California,
making it the most important state of origin for non-native residents.23

Overall, these results suggest that the persistence of migration networks is partially explained
by workers seeking out cities that are physically and institutionally close, and which have similar
cultures and employment structures. This rationalizes the use of historical migration shares in the
reduced form analysis as sufficient statistics for the potential of later migration spillovers between
particular city pairs.

2.3 Case study: Superstar cities and migration spillovers

What do migration links look like among large cities in the U.S – and how does that affect house
price dynamics? In this section, I show an example of how identifying the migration networks
of a particular set of cities with particularly strong economic booms allows us to predict which
other cities will experience population growth. I focus on a small set of “superstar” cities that
were shown by Gyourko et al. (2013) to have had historically particularly inelastic housing supply
and high housing demand, which result in high house price elasticities with regard to population
growth, which means that “lower income households [are] crowded out by higher income house-
holds”(Gyourko et al., 2013).

19The 2-digit industry share vector distances are 0.07 for Boise-L.A. and 0.28 on average.
20I follow Eckert et al. (2019) in defining Business Services employment as consisting of NAICS-5 industries, that

is, it includes NAICS sectors 51, 52, 53, 54, 55, and 56. The employment shares are computed from QCEW data.
21This is calculated as exp(−1.291 ∗ 0.07)/exp(−1.291 ∗ 0.28) = 1.31, where I use the coefficients on industry

structure differences in Column 2 of Table 2.
22This is calculated as exp(6.280∗ (−.682))/exp(6.836∗ (−.682)) = 1.46, where 6.280 = ln(533) is the log distance

in miles from L.A. to Boise, and 6.836 = ln(931) that from L.A. to Wichita.
23The question of state of birth by current state of residence was asked for the first time on the 1980 census. Over-

all, 50.9% of all Idaho residents were born out-of-state in 1980, and 14% of the latter were born in California. Cen-
sus data is available from: https://www.census.gov/data/tables/time-series/demo/geographic-mobility/

place-of-birth-decennial.html
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As a result of these characteristics, superstar cities should be very likely to originate migration
flows during the housing boom 2000-2007 that lead to spillovers to destination cities. Gyourko
et al. (2013) identify superstar cities by noting for the respective 20 years preceding the years 1970,
1980, 1990, and 2000, whether a metro area was above-median in the sum of house price growth
and housing unit growth (“high demand”), and in the top decile of the ratio of these two variables
(“inelastic”). Superstars fulfill these criteria for at least two of the four periods considered. The
resulting list of 21 superstar MSAs corresponds to 14 different 1990 commuting zones, which I use
in my analysis.24

Identifying migration spillover cities. In order to identify cities that are likely to be
impacted by migration spillovers from superstar cities, I proceed as follows: First, I restrict the
search to large cities25 Second, for each superstar city, I compute the average annual share of
all IRS-reported migration outflows going to each other city for the years 1990-2000. Then, for
each superstar city, I retain the Top 4 large migration destinations receiving the highest 1990-2000
outflows. Any of the retained top destinations that are not superstar cities themselves, I add to
the list of ”superstar spillover cities”, of which I identify 12.26 Note that both the superstar and
the spillover cities were defined solely based on data up to the year 2000.

The housing boom in superstar and spillover cities. To understand how the superstar
and spillover cities defined ex ante from pre-2000 data fared subsequently during the housing
boom, Figure 3 plots average house price growth and population growth during 2000-2007 for all
large CZs. The graph shows that the superstar characteristics observed by Gyourko et al. (2013)
in pre-2000 data are highly persistent: all the superstar cities are in the upper left corner of the
graph, which means they continue to have high house price growth and a high ratio of house price
growth to population growth. The “spillover” cities are characterized by high house price growth
and higher population growth than the superstar cities during the boom.27

The graph also highlights that it is misleading to speak of “the” U.S. housing boom of the early
2000s: While house prices experienced rapid growth on average, there is substantial cross-sectional
variation, with more than a third of large cities experiencing nominal house price increases of less
than 5% per year. Conversely, there are clear “boom” cities with average house price growth above
10% per year, but they almost exclusively consist of superstar and migration spillover cities: of 17
“boom” CZs, 6 are superstar cities, 10 are spillover cities, and only one is neither.28

24These 14 superstar CZs, identified by their largest city, and the CZ code in parentheses, are: Albany, NY
(18600); Newark, NJ (19600); Boston, MA 20500); Hudson Valley, NY (19300); Los Angeles, CA (38300); NYC
(19400); New Haven, CT (20901); San Francisco, CA (37800); Philadelphia, PA (19700); Santa Barbara, CA
(38200); Springfield, MA (20800); Pittsfield, MA (20902); Providence, RI (20401); San Jose, CA (37500).

25Here, “large” cities are defined as having more than 0.85 M adults over the age of 21 in the year 2000 census, a
cutoff chosen to ensure that they represent slightly more than 50% of U.S. adults. Of all continental U.S. CZs, 45
are “large”. I exclude New Orleans as it represents a large outlier in negative population growth due to the impact
of Hurricane Katrina.

26These “spillover cities”, identified by their largest city, and the CZ code in parentheses, are: Baltimore, MD
(11302); Tampa, FL (6700 Miami, FL (7000); Palm Beach, FL (7100); Wash., D.C. (11304 Buffalo, NY (18000);
Phoenix, AZ (35001 Fresno, CA (37200); Sacramento, CA (37400); Las Vegas, NV (37901 San Diego, CA (38000);
Seattle, WA (39400)

27With the sole exception of Buffalo, NY, among the spillover cities, and Los Angeles among the superstars, the
two groups can be neatly separated, with the cluster of spillover cities all having higher population growth as a
result of migration.

28That one city is Orlando, FL. Also note that, among the spillover cities, there are two outliers, which have
much higher population growth (> 3% per year) than other spillover cities, but are in the lower half of house
price growth in this group: Las Vegas, NV, and Phoenix, AZ. Tthese two cities are unusual in how little house
price growth they saw during the housing boom compared to their peers. While this pair of cities is sometimes
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Overall, being a likely migration spillover destination of workers displaced from superstar cities
seems to predict high population and house price growth during the housing boom, showcasing
the house price propagation mechanism through migraton networks that I propose in this paper.

3 Data & empirical approach: reduced-form spillovers

In this section, I describe how I measure migration exposure to shocks in other cities empirically.
Moreover, I discuss the construction of the instrument for house price changes in a city’s migration
network. Then, I show how these shocks to a city’s migration network are used to identify causal
house price spillover effects between cities. Last, I introduce the data sources for the reduced-form
estimation.

Spillover mechanism. The analyses below all provide evidence regarding the following pro-
posed mechanism for spillovers of house prices between cities: (1) Some cities receive economic
shocks that attract one group of workers more than another (e.g. a technology shock increasing
skilled workers’ wages in large cities). (2) In cities with constrained housing supply, this inflow
of workers increases house prices and displaces other groups (e.g. non-college workers), who are
more likely to move to cities with strong pre-existing migration links. (3) These migration-linked
destination cities also experience higher house price growth as a result of increased in housing
demand due to the population spillover. As a consequence of this mechanism, we would observe
house prices move together between cities that have stronger migration links.

3.1 Measuring Migration Network House Price Changes

To measure the spillover effects of house price changes in other cities, I need a measure of the
size of a focal city’s migration network exposure to house price changes in other cities. This
measure should reflect exposure to changes in other cities’ characteristics through migration flows.
Intuitively, migration exposure of city i to changes in house prices in some other city j depends
on two variables: (1) the importance of city j as a destination for migrants from all other cities
k, and (2) the degree to which redirected migrants from city k will increase inflows into city i if
city j becomes more expensive. These two components capture the fact that, in a network setting,
migration from city k to city i will not only depend on shocks to either of these cities, but also on
changes occurring in other locations that indirectly compete with them for migrants.

In the data, the importance of city j to migrants from k corresponds to the outmigration
share µk→j, while the size of inflows into i that would result from city k migrants making different
location choices is captured by the inmigration share φi←k for city i.

Putting these two terms together, the migration exposure of city i to city j house prices is

highlighted as “anomalies” (Glaeser, 2013) for experiencing high house price growth during the boom, this analysis
shows that an unusually large migration shock combined with their above-median supply constraints (according to
Saiz (2010)) can perhaps explain their relatively large house price response. In fact, other spillover cities, such as
Washington, D.C., or Baltimore, MD, which experienced similar house price increases with much smaller demand
growth and similar supply constraints, should be considered much more “anomalous” during the 2000-2007 boom
than Las Vegas or Phoenix.
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given by

ψij =
1

ψ̄i

∑
k∈N

φi←k︸︷︷︸
In-migration
share for i

µk→j︸︷︷︸
Out-migration

share for k

, (2)

where ψ̄i = 1/
∑

j:j 6=i
∑

k∈N φ
i←kµk→j scales each city’s relative migration exposures to sum to one.

I use these migration exposure weights to construct a measure ∆PNWit of average changes in house
prices that city i is exposed to through its migration network, which is defined as

∆PNWit =
∑
j:j 6=i

ψij︸ ︷︷ ︸
Migration
exposure

∆ lnPjt. (3)

This measure captures the network link of house price growth ∆ lnPjt in other cities to house price
growth in city i through changes in location choices. The ψij terms weight house price growth in
other cities j by the degree to which they compete with city i for migrants, considering all possible
migration network links via other cities k. Appendix E.1 shows that a similar functional form
for migration exposure ψij could also be directly derived as the implied spillover effect in a static
location choice model.

In order to avoid concerns over endogenous changes in these migration exposure weights over
time, Ihold the migration network weights fixed across years at baseline period values. In particular,
I average inter-city migration flows over 1990-1995 reported in IRS migration data to construct the
migration weights ψij‘90-‘95. This practice of holding the migration weights fixed at a baseline period
level has a strong precedent in the literature using historical migration shift-share instruments
(Altonji and Card, 1989; Boustan, 2010; Howard, 2020; Derenoncourt, 2019). See Appendix Section
F.1 for further discussion on why I choose to construct weights this way.

3.2 Baseline network spillover specification

The baseline spillover effect that we are interested in is the effect of network house price changes
∆PNWit defined above on house price growth in city i. I estimate the following reduced-form
relationship:

∆ lnPit =αi + αt + η̃nw∆PNWit + β′Γit + ξ̃Pit , (4)

Here, the network spillover coefficient η̃nw is a function of constant model parameters, and Γit
represents observable control variables capturing characteristics of the focal city or its migration
network. These covariates are discussed in detail in Section 3.5. The error term ξ̃Pit captures
unobservable relative changes in other drivers of location choices in the focal city relative to its
migration network, i.e. amenity and wage changes, and local differences in effect coefficients.

In this specification, we are mainly interested in the network spillover effect η̃nw. If house price
growth in other cites can propagate through migration networks, we would expect those cities to
experience higher house price growth that are more exposed to cities with increasing house prices
through their migration network. That is, positive house price growth spillovers should be reflected
in η̃nw > 0. Moreover, given that the postulated channel for these effects runs through migration
flows that cause house price increases, we should be able to find effects in the same direction for
migration flows when we replace the dependent variable by the net migration rate.
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In the next section, I present an identification strategy that allows me to estimate causal
spillover effects of house prices in this specification.

3.3 Construction of network instruments

The main identification concern in estimating Equation 4 arises from the fact that the house price
residual ξ̃Pit in a location choice model is likely to be a function of focal city and migration network
changes in amenities and wages.

Intuitively, if house price changes in different cities are fully offset by changes in wages or
amenities, then shifts in housing cost might not cause migration, as the overall attractiveness of
the city would not change. Similarly, any migration network spillover effects found may be due
to a correlation in the unobserved amenity and productivity shocks in connected cities rather
than causal effects of one city on another. In general, there may be omitted variable bias if
Cov(∆PNWi,t−1, ξ̃

P
it ) 6= 0. To address this concern, I develop a network instrumental variable approach

for network price changes, which combines city-level Bartik (1991) shift-share instruments common
in the house price literature with the network structure of migration flows.

City-level “Bartik” instruments. In standard location choice models, housing demand is
a positive function of local labor productivity shocks – and the size of the house price response
to these shocks will depend on the local house price elasticity (Glaeser et al., 2008). This insight
motivates the use of shift-share shocks exploiting exogenous local wage changes, in combination
with housing supply constraints, as instruments for house prices. I construct plausibly exogenous
local wage shocks Bit by combining the local wage bill share ω̃ι,i,t0 of workers in 3-digit NAICS
industries ι in a baseline period t0 with national wage growth ∆ lnWUS

ι,−i,t in that industry (as a
proxy for industry wage trends) in the form

Bit =
∑
ι

ω̃ι,i,t0∆ lnWUS
ι,−i,t.

In order to minimize bias from endogeneity in the local industry exposure – which might result
from auto-correlated national industry shocks (Goldsmith-Pinkham et al., 2018; Jaeger et al.,
2018) – I fix industry exposure shares at their 1990 level.29 Moreover, the industry averages of log
wage growth are computed as leave-one-out measures to avoid mechanical correlation between the
national trend estimate and city i wages (Borusyak et al., 2020). See Appendix Section F.2 for
more details on the construction of different shift-share shocks used in the reduced-form analysis
and the structural estimation.

As an example of what might be driving common national industry trends, Eckert et al. (2019)
note that the national wage growth in “skilled scalable services” like finance and communication
industries in the last decades has been an important contributor to wage growth in U.S. cities
where these industries are prevalent.30 This trend, in part caused by a decline in communication
costs, is an example of the identifying variation underlying the industry shift-share instruments .

To capture plausibly exogenous heterogeneity in the effect of this local exposure to national
wage shocks on house prices, I also interact Bit with a measure of local land unavailability for
construction xlandi from Lutz and Sand (2019).31 This measure captures geographic constraints

29Note that in the structural estimation I update the baseline period and use year 2000 industry shares instead,
as the quantitative estimation only includes data for 2005 - 2017.

30See Appendix Figure A12 for a plot of wage trends by industry sector over time.
31These are comparable to the Saiz (2010) land availability measures commonly used in the literature. Lutz and
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to marginal housing construction, which would be expected to increase the slope of the housing
supply curve, and thereby increase the responsiveness of house prices to the wage shocks.32

Network instruments. Assuming that the shift-share “Bartik” shocks just defined represent
plausibly exogenous shocks to local house prices in each city, a weighted average of these shocks
occurring in other cities in a focal city’s migration network should capture its exposure to exoge-
nous house price changes in other cities. Put differently, those cities that have strong migration
connections to locations that are more exposed to Bartik shocks will see greater exogenous house
price growth in their migration network – which implies a greater spillover effect on their own
house prices. Variation across cities in their network exposure to other cities’ Bartik shocks can
therefore identify the house price spillover effect η̃nw.

This intuition is illustrated in Figure 4: Consider a simple migration network between Los
Angeles, Boise, Boston, and Portland, where there are large migration exposures (thick solid
arrows) to Los Angeles for Boise, and to Boston for Portland, while migration links across these
pairs are negligibly small (dotted arrows). Now, if a wage shock BLA interacts with the relatively
constrained housing supply xlandLA in Los Angeles, driving up house prices, this would be expected
to cause greater migration flows from Los Angeles to Boise, but only negligible flows to Portland.
As a result, house prices in Boise increase, all else equal, while Portland is mostly unaffected. In
the context of this example, the network IV approach uses the degree to which Los Angeles shocks
lead to greater house price changes in Boise than in Portland to identify the size of causal spillover
effects.

The instruments for network house price changes are constructed analogous to ∆PNWit as mi-
gration exposure-weighted averages of network Bartik shocks and their interactions with land
constraints:

NWPB
it =

∑
j:j 6=i

ψij‘90-‘95Bjt· (5)

NWPBx
it =

∑
j:j 6=i

ψij‘90-‘95Bjt · xlandj , (6)

where the migration network weights ψij‘90-‘95 are as defined in Equation 2. Intuitively, the instru-
ments NWPB

it and NWPBx
it capture the predicted exogenous component of migration-weighted

house price growth in city i’s migration network.33

Sand (2019) build on his methodology to expand the number of covered cities and, among other things, improve
the measurement of land availability for overlapping city areas and coastal locations.

32An influential critique by Davidoff et al. (2016) of research using housing supply constraints like land availability
as instruments for house prices has noted that supply constraints may be invalid instruments due to their correlation
with housing demand shocks. That critique is not applicable here: Most importantly, my main analyses identify
effects off variation in Bartik shift-share shocks over time, and the supply constraints only matter in so far that
they form part of the exposure term in the shift-share instrument construction. As Borusyak et al. (2020) show,
it is not necessary for these exposure terms (and therefore the supply constraints) to be exogenous with regard to
local unobservable shocks, as long as the shifter in the form of a national industry trend is exogenous. The precise
sense in which this exogeneity condition needs to hold here is detailed in Section 3.4. In addition, my main analyses
control for commuting zone fixed effects that eliminate any constant effect of supply constraints on house price
growth. Beyond that, I show that my analysis is robust to controlling for a number of different local characteristics
that should at least in part control for any local dynamics caused by supply constraints. Most importantly, I control
directly for the interaction of the focal city’s shift-share shock with local supply constraints (see Section 3.4) – and
the identifying variation is only coming from the residual effect of other cities’ supply constraints interacting with
shift-share shocks. For these reasons, I believe the Davidoff et al. (2016) critique of supply constraints used in IV
settings is not relevant in my setting.

33Analogous to the construction of the wage shocks Bit, and consistent with the definition of ∆PNWit , I again
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There is by now an extensive literature that instruments for local house prices using shift-share
measures of local exposure to exogenous national productivity trends (Saks, 2008; Saiz, 2010;
Paciorek, 2013; Mian et al., 2013; Guerrieri et al., 2013; Beaudry et al., 2014; Diamond, 2016).
The innovation in this paper consists of applying those city-level shocks to other cities to identify
exogenous house price changes in the focal city’s network and their effect on the focal city’s house
prices through a spillover channel, rather than looking at the direct effect of the Bartik wage
shocks on the focal city. As far as I know, there are few comparable papers that use a network
approach to shift-share identification. The most similar ones include Bartelme (2018), who uses
Bartik shocks to nearby cities as an instrument for a city’s market access in a trade gravity model.
Similarly, Baum-Snow et al. (2019) use shift-share labor demand shocks to other neighborhoods
that are accessible by commuting to identify the effect of changes in “resident market access” on
life outcomes. However, I am not aware of any other work using migration links and shift-share
shocks to other cities to identify spillover effects.

3.4 Network instrument identification

Industry-level reformulation of network IV. In order to make the discussion of the identifi-
cation in my network IV approach more transparent, I first extend the results in Borusyak et al.
(2020) to show how the distribution of industry wage shocks determines the spillover estimate. As
I show in Appendix Section E.2, the IV estimator of the spillover coefficient can be written as

ˆ̃ηnw =

∑T
t=1

∑Nind
ι=1 sιgιt(∆ lnPit)

⊥
ιt∑T

t=1

∑Nind
ι=1 sιgιt(∆PNWit )⊥ιt

,

Here, I have combined the industry exposure and migration network structure into a weight sι =
1
N

∑N
i=1

∑
j:j 6=i ψ

ij
‘90-‘95ω̃ι,j,‘90 that summarizes the average across cities i of their migration network

exposure to industry ι. The notation ν̄t denotes an average across cities, weighting them by their
relative exposure to industry ι, and gιt is log national wage growth in industry ι. This estimator
is equivalent to running an industry-level regression of weighted average house price growth (with
weights given by industry exposure through migration networks) on weighted network house price
growth, instrumenting for the latter with national industry wage growth.

This rewriting of the estimator in this way at the industry level clarifies the identifying variation
underlying the network IV estimate: We can think of the spillover effect estimation as identifying
the spillover effect from the degree to which the covariance in industry wage growth shocks with
house price growth in the cities most exposed to the industry (the numerator) is higher in the cities
that are “treated” in the form of having house price changes in their migration network that vary
with industry wage shocks (the denominator). For instance, if cities with migration connections
to technology hubs (e.g. Boise, ID) see higher house price growth precisely when tech hub house
prices rise (e.g. in San Francisco) as a result of national trends in knowledge industry wages, then
this variation allows us to infer a causal positive spillover effect.

This rewriting of the network IV estimator in the form of industry-level shocks then allows me
to formulate the exclusion restriction of the network approach as follows:

Network IV exclusion restriction: If the network instrument NWPB
it (or NWPBx

it ) is relevant
and mild regularity conditions hold (the variance matrix of control variables has full rank, and the

hold the migration exposure shares fixed at a baseline period level, here consisting of average 1990-1995 migration
shares.
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covariance matrices of instruments and residuals with controls are bounded and exist), then the IV
estimate of the spillover effect ˆ̃ηnw is consistent if and only if

T∑
t=1

Nind∑
ι=1

sιgιtξ̄
P,⊥
ιt →p 0.

Here, ξ̄P,⊥ι,t is the error in the house price growth regression in Equation 4, residualized with regard
to the control variables Γit, and averaged over cities, weighting them by their migration network
exposure to industry shocks.34

This condition shows that, for the network IV estimate to be consistent, industry wage shocks
cannot be systematically higher for those industries that have a systematically larger migration
network impact on cities that are experiencing large unobserved house price shocks, conditional
on control variables.

As Borusyak et al. (2020) show, this identification allows for a city’s migration network to be
endogenously determined – it only requires the national industry trends over time to be exogenous
in the sense defined in the exclusion restriction. This would be invalidated, if, for example, cities
that experience more migration flows from cities that specialize in the booming tech industry are
also systematically experiencing greater idiosyncratic house price movements in a way that is not
captured by their own exposure to knowledge industries or any other included control variables.

“Double Bartik” control variable. As I am using the industry structure of other cities in
the same migration network to instrument for network house price shocks, there may be a concern
that the network house price instruments are correlated with focal city i industry shocks if industry
structure is correlated across cities that share migration links. Note that this concern is supported
by the significant coefficient on industry structure in the migration cost determinants analyzed in
Section 2.2: Table 2 showed that migration costs appear to be lower among cities with similar
industry structures, making them more likely to have strong migration links.

To address this issue, I include focal city i’s direct Bartik shocks Bit and Bitx
land
it as control

variables in the regression, an approach which Chodorow-Reich and Wieland (2020) titled the
“double Bartik” method. Controlling directly for the focal city’s own Bartik shocks effectively
orthogonalizes the network instrument with regard to any direct city i exposure to national industry
wage shocks. To make this concrete, consider again the Boise, ID, example: While Los Angeles
and Boise have a relatively similar industry structure, it is not identical. For example, L.A. is
more exposed than Boise to industries in the “information” industry sector that includes motion
pictures and broadcasting (NAICS code 51), which saw real wage growth nationally in 2000-2017
that was 15% higher than average.35 This difference in exposure to shocks means that Los Angeles
will see some increases in local house prices that are not correlated with Boise’s direct exposure
to industry wage shocks – and these effects will be larger due to L.A. being in the top quartile of
land-constrained cities. These exogenous house price increases in L.A. that are driven by industry
shocks not affecting Boise are then used to identify the spillover effect on house prices in Boise
due to its exposure to migration outflows from L.A.

Note that it is not necessarily an issue that the Bartik industry shocks might be an imperfect
proxy for unobserved (and potentially correlated) actual industry shocks that are affecting both a

34See Appendix Section E.2 for details on the derivation of this expression.
35Real wage growth (corrected for CPI-U growth) in NAICS 51 was 27% over the 2000-2017 period, while

the employment-weighted average of real wage growth across sectors was 12%. See Appendix Figure A12 for an
illustration of these industry wage trends.
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focal city and its migration network. As the analysis above showed, if there is measurement error
in the industry exposure terms that affects local house prices, the exclusion restriction is only
violated if these measurement errors and unaccounted-for industry similarities are systematically
correlated with migration network exposure to growing industries, and are not captured by the
included control variables, such as local Bartik wage shocks.

3.5 Additional covariates and robustness checks

In addition to the IV strategy described above, I also try to address any potential omitted variables
bias by explicitly controlling for covariates – informed by a location choice model – that might
confound the house price spillover effect. Moreover, I explore different specifications to ensure the
robustness of the results. These variations are detailed below.

National house price trends. An extensive literature suggest that house prices might co-
move in different cities due to national house price trends, for instance caused by changes in
mortgage rates or business cycle dynamics as a result of credit supply changes (López-Salido
et al., 2017; Mian et al., 2019). I control for this possibility by including year fixed effects in the
regressions.

Regional trends. There may also be regional differences in house price trends, for instance due
to the timing of settlements in the historical evolution of the U.S., resulting in higher population
mobility in general due to differences in the “rootedness” of local populations, as Coate and
Mangum (2019) argue. Moreover, underlying house price trends may be caused by long-run shifts
in preferences for regional amenities, such as the increased attractiveness of the sunbelt as a result
of air conditioning (Glaeser et al., 2001). To avoid confounding my analysis of house price-driven
migration spillovers with these trends, I allow for U.S. Census region-specific time trends and city
fixed effects in house price growth.

Migration access. The static location choice model in Appendix E.1 suggests that the size of
migration flows to and from a city should depend on the population size of cities in its migration
network. That is, a given change in attractiveness of a city should result in a different migration flow
if “migration access” in the form of the potential migrant population changes – analogous to the role
played by market access in trade models (Donaldson and Hornbeck, 2016; Allen and Donaldson,
2018). To control for this size effect, I construct the empirical counterpart to migration access
Mi,t−1 implied by the model as Mi,t−1 =

∑
k φ

i←k
‘90-‘95∆ lnLk,t−1, and include it in the regressions.

Wage effects. The attractiveness of a city to migrants is not just a function of housing costs,
but also of income. In fact, if a shock to labor demand creates opposite and offsetting wage
and housing cost effects, we might see a city becoming more expensive but without any change
in migration as real wages remain constant (Moretti, 2013). Therefore, it may be important to
control for wage changes in the migration network. To do so, I construct the wage change analogue
of the network house price growth term as

∆WNW
it =

∑
j:j 6=i

ψij‘90-‘95∆ lnWjt,

where Wjt is computed as the salary income per capita in the CZ reported to the IRS. I include
∆WNW

it as a control variables in my baseline specification.

Neighboring CZ spillovers. There is a possibility that local shocks could affect neighboring
commuting zones directly through changes in commuting patterns or overlapping housing markets
– without a need for a migration channel. For instance, shocks to the New York financial sector
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may affect house prices in some parts of Northern New Jersey directly through the incomes of
long-distance commuters. I control for this possibility by excluding from any network measures
commuting zones that are too close to one another in terms of physical distance. In the most
stringent baseline specification, I will exclude any CZs that contain counties of which the county
center is less than 150 miles away from any county center in commuting zone i. This ensures that
the estimated house price spillovers operate at a distance that requires long-distance migration,
such that a worker could not retain their local job when moving. Note that this inverts the
mechanism considered, for example, in DeFusco et al. (2018), who focus on spillovers between
nearest-neighbour cities.

Endogenous lagged house price growth. To explore the possibility that extrapolation
plays a role in house price formation, I also consider specifications that include lagged house price
growth as an independent variable. However, when I include lagged house prices ∆ lnPi,t−1 in city i
itself in the network spillover estimation, they are likely to be correlated with the contemporaneous
house price error terms. Thus, the coefficient on these variables would be biased and would in
turn lead to bias in our network spillover estimate. To prevent this issue, I instrument for any lags
in house price growth using the interaction of the Bartik industry shock, for the corresponding
lead or lag period, and local land availability. Moreover, as the network spillover effect would also
operate in any past period, I also include PNWi,t−1 in the extrapolation specification and instrument
for this variable using two lags of the network instruments.

3.6 Data

As there is currently no long panel of annual U.S. migration data available that has information
on different worker types, as well as sufficient sample size to accurately capture the network of
city-level migration, I will limit the reduced-form analysis to the CZ-by-year level – implicitly
treating workers as homogeneous. In the full quantitative estimation in Section 6, I will relax
this assumption and allow for differences between college- and non-college-educated workers. This
section documents the main data sources to implement the reduced-form network IV approach
described above. All data is crosswalked to 1990 commuting zones, aggregating county-level data
using a crosswalk provided by Autor and Dorn (2013).36

Migration flows. I compute migration flows between commuting zones from county-to-county
migration flows provided by the Internal Revenue Service (IRS) for 1990-2017. The IRS uses
changes in the zip codes on individual income tax returns that were filed for the previous tax
years to infer moves. Based on this methodology, the IRS is able to assemble a data set of the
annual movement of tax returns and the number of exemptions – which correspond closely to the
number of people – across counties, covering > 90% of the U.S. population.37 This mobility data
should correspond closely to the actual movement of people across counties - with small caveats
(Gross, 2003).38 I use this data to compute CZ-to-CZ flows and the share of people not moving in

36Available online at https://www.ddorn.net/data.htm.
37For instance, for the fiscal year 2014, the IRS received 149 million income tax returns - which correspond to

tax households - on which 291 million personal exemptions were claimed (Source: https://www.irs.gov/uac/soi-tax-
stats-individual-income-tax-returns), which compare to ca. 319 million people in the U.S. in 2014.

38The small number of people who do not have to file income tax returns is not captured in this data, and in
that number low-income people and the elderly tend to be overrepresented. At the same time, a small number
of tax returns that are filed late - after September of the filing year - are not captured. The latter returns are
usually granted extensions due to their complexity, which correlates with high income, so the mobility data may
under-represent very high income returns as well. Moreover, changes in marital status may lead to a failure to
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each year, omitting flows in and out of New Orleans from any totals.39 The baseline in-migration
weights φi←k‘90-‘95 are calculated as the average inflow from city k to i in each year 1990-1995, as a
share of the average population in city i in those years. Similarly, the share of people staying in
a city µii‘90-‘95 is the average number of people (tax exemptions) not moving away from city i as a
share of the previous year’s population – also averaged over 1990-1995.

For the construction of the city-to-city migration network, I only include continental U.S.
commuting zones, i.e. not including flows to and from Hawaii, Alaska, Puerto Rico, or other U.S.
territories. For migration totals, for instance to calculate gross inflows, outflows and net migration
from each city, I take total migration to any destination and subtract foreign migration to obtain
a measure of total domestic migration flows, albeit not restricted to the continental U.S., which
cannot be separately identified in total flow data.

House price growth. An annual panel of house prices is obtained from the Federal Housing
Finance Authority (FHFA) at the county level for 1990-2017. Different counties have data starting
in different years, but by 1990 house price indices are available for most of the counties in the U.S.
The data are repeat-sales indices, so while the levels are not comparable cross-sectionally, they can
be used to construct the house price growth terms relevant for the reduced-form analysis.

I first compute county-level log changes in house prices and then aggregate these growth rates
to commuting zones as weighted averages, with weights derived from county populations in 2000.
Moreover, to avoid bias from small counties entering the sample in later years as FHFA coverage
improves, I fill in the county-level growth rates with state-level house price growth for CZ-years
where less than 10% of the CZ population are in counties with available house price data. This
imputation is a minor issue as CZs with more than 50% of their population being covered by FHFA
reporting constitute 95% of the continental U.S. population by 1990 and 99% by the year 2000.40

The resulting balanced panel of 1990-2017 house price growth for all CZs is the dependent
variable used in the reduced form regressions.

Housing construction permits. New housing construction permits by commuting zone are
constructed from county-level counts of permits available from the Census Building Permits Survey
for 1990-2018, which I aggregate to 1990 CZs. Some counties do not report permit numbers. Thus,
in cases where not all component counties of a CZ are reporting, I scale the reported numbers in
proportion to the reporting counties’ share of the CZ population to make up for the missing share,
using county populations in 2000 as weights. To minimize the impact of any scaling, only CZ-years
with counties reporting that correspond to at least 80% of the CZ population are included in the
analysis.41

match returns, as for joint filers only the primary taxpayer’s social security number is captured, so that after a
divorce, for instance, one of the former couple’s social security numbers will not be associated with a corresponding
county of residence for tax purposes for the prior year and thus gets omitted from the data set. It is also important
to note that the IRS does not name counties if the pairwise flow consists of less than 10 tax returns, so small
migration flows are censored. However, these flows are contained in the totals.

39The reason for excluding flows to and from New Orleans here and in all other analyses is that the city’s loss of
the majority of its population as a result of Hurricane Katrina in 2005 represents a large outlier that would distort
all migration-related analyses and is mostly unrelated to the deliberate equilibrium location choices that I focus on
in this paper.

40In unreported regressions, I have also verified that the main results of the reduced-form analysis are robust
to omitting all CZs that did not have more than 50% FHFA reporting coverage for their population for the entire
1990-2017 sample period.

41This is a minor issue, as <8.6% of county-years are part of CZs that have <99% of their populations accounted
for. In any year, at least 717 CZs have at least 80% of their total population fully covered by permit reporting.
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Wages. I use IRS tax data on total salary income by county to compute average salary income
per capita for each commuting zone as a measure of average wages.

Mortgage lending volume and loans. In order to measure the effect of migration on
mortgage market activity, I use loan-level data on mortgages provided under the Home Mortgage
Disclosure Act (HMDA). For each year and borrower county, I retain all the loans that are origi-
nated for home purchases (excl. refinancing and other loan purposes) and aggregate total lending
volume in dollars, as well as the count of new originated purchase loans to the CZ level.

Vacancy data. I obtain vacancy rates from the Census Housing Vacancy Survey and compute
changes in average vacancy rates for homeowners and renters between a baseline period (1991-1997)
and the 2000-2007 and 2012-2017 boom periods in my analysis. This comparison can be computed
for 98 CZs, which have data for all time periods. I group these cities into those with above- and
below-median housing supply constraints based on their share of land unavailable for construction
(Saiz, 2010; Lutz and Sand, 2019).

4 Reduced-form estimates of house price spillovers

In this section, I first present the baseline results on house price spillovers between cities. Second,
I show that the expected effect pattern holds for net migration to be an important transmission
channel, and that other city-level variables behave in line with housing demand increasing as a
result of migration. Third, I demonstrate that migration spillovers are quantitatively important
by estimating their ability to explain the cross-sectional variation in house prices in the run-up to
the housing boom of the 2000s, and by showing that migration links are good predictors of house
price correlations between city pairs.

4.1 Migration spillover effects on house prices

4.1.1 Baseline effect estimates

Recall that I am estimating equations of the form

∆ lnPit =αi + αt + η̃nw∆PNWit + β′Γit + ξPit ,

where Γit represents various control variables capturing characteristics of the focal city or its
migration network. Moreover, in the baseline specifications I will only allow for CZs to be included
in one another’s migration network, if they are at least 150 miles apart.

OLS baseline estimates. The effect of estimating Equation 4 using OLS without any of the
control variables is shown in column 1 of panel A in Table 4. I find a significant positive coefficient
of house price changes in a city’s migration network on the focal city’s house price growth. The
other columns of the table sequentially add in the control variables discussed in Section 3.5: In
column 2, I control for city fixed effects, as well as national trends. In column 3, I additionally
control for regional time trends. In column 4, I add the lagged migration access. In column 5, I
control for average wage changes in the migration network. In column 6, I add the “double Bartik”
controls for focal city labor productivity shocks, as well as their interaction with land availability.
The coefficient on the network house price changes is remarkably stable: even after adding in all
the control variables in column 6, the coefficient size changes by less than 10% relative to the
estimate in column 1.
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To interpret the effect sizes, note that the network house price term scales house price changes
in other cities by migration weights ψij‘90-‘95, which sum to one. As a result, the coefficient can be
interpreted as the pass-through of average house price changes in city i’s migration network. That
is, an average 10 ppt house price change in all other cities in the migration network correlates on
average with a contemporaneous change in house prices growth in city i of about 1.4 ppt (based
on the OLS estimate in Column 6), after accounting for the included control variables.

Network IV first stage. Before proceeding to the causal effect estimation, I verify that the
network labor productivity shocks affect network house price changes in the expected manner – the
“first stage” of the estimation. That is, we are interested in the effect of the instruments NWPBx

it

and NWPB
it on the migration-weighted index of actual house price changes in each city’s network

across all years 1991-2017, after residualizing all variables with regard to the full set of control
variables. The corresponding first-stage coefficient estimates are shown in Column 2 of Table 3.
Note that the relationship is upward sloping for the land constraint interaction with the wage
shock, and downward sloping for the wage shock alone.42 This means that the more constrained
the migration network of a city is, the more positive the effect of shocks on network house prices
is. The same relationship is also shown visually in Appendix Figure A3 as binned scatter plots of
the instruments NWPBx

it (left panel) and NWPB
it (right panel) with the residualized migration-

weighted index of actual house price changes in each city’s network.

The first-stage F-statistics for the instruments, corresponding to the predictive relationship
shown in Figure A3, are reported at the bottom of the main IV results in Table 4, and they are
large in all specifications based on conventional thresholds.

Network IV baseline estimates. Panel B of Table 4 shows the IV-GMM estimates using the
network productivity shocks to instrument for network house price changes. The IV coefficients
are positive, statistically significant and sizeable in all specifications. Column 6 of Table 4 shows
that the estimate of the network house price effect when we include the full set of control variables
is about 60% larger than the corresponding OLS estimate, suggesting that there was some omitted
variable bias. This negative bias in the OLS could for instance be explained by the house price
increases being in part caused by positive shocks to city’s amenities which will reduce the ouflows
of migrants to other cities in response to the higher housing costs, inducing a more negative
correlation in house prices which the IV corrects.

The estimated causal spillover effect size implies that a 10 ppt average increase in house price
growth throughout a city’s migration network has a causal effect of about 2.3 ppt higher house
price growth in the city itself. This means that a one standard deviation increase in exposure
to house price growth in other cities (see summary statistics in Appendix Table A1) leads to a
0.2 standard deviation change in city i house prices. Note that these reduced-form effects do not
necessarily capture the full general equilibrium effect of shocks, as a shock that spills over to city
i could then have secondary spillover effects to cities that are exposed to migration as a result of
city i house prices.

42The intuition for this downward slope is as follows: the raw relationship is positive - see Column 1 of Table
3. However, industry wage shift-share shocks increase both wages and house prices, and I am interested in the
out-migration driven by increases in housing cost net of any increase in wages. Once I include the appropriate wage
controls, I find the effect predicted by theory: controlling for wage changes, migration networks with lower supply
constraints must have lower house price growth for a larger labor demand shock. That is, when we observe cities
with a large and a small positive shock, but with the same wage effect, this suggests that house price growth must
have been lower in the large shock city, such that real wages went up more. However, it is always the case that
when a larger shock coincides with higher supply constraints, then house prices increase more even holding wages
constant.
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Dynamic effect methodology. To understand the time patterns of these spillover effects, I
study the effect of period t shocks on city i in future periods. I estimate IV forecasting regressions
that correspond to local projections with external instruments (Jordà, 2005; Stock and Watson,
2018) of the form

Yi,t−1+h =αi + αt + η̃nwh ∆PNWit + β′Γit + ξPi,t−1+h, (7)

where the dependent variable Yi,t−1+h can be a flow variable, such as period t − 1 + h house
price growth, or a cumulative variable, such as the total effect on the level of house prices∑h

k=1 ∆ lnPi,t−1+h of period t shocks, or the effect on the level of population. The vector Γit
includes the same additional period t control variables as the static model (see Section 3.5), and
I am again instrumenting for the time t network price growth shock using network shocks. The
coefficients η̃nwh now represent the impulse response in period t− 1 + h of the shock. That is, the
contemporaneous impacts correspond to h = 1, the impact on the dependent variable in the year
after the shock is h = 2, and so on.

When reporting dynamic effects, I will cumulate impulse responses on house price growth and
net migration to obtain total house price level and population level effects over time. However,
effects on per-period flow variables like permits or mortgage lending will be reported as per-period
effects, as changes in these flow variables do not cumulate.

Dynamic house price effects. The estimated time pattern of IV estimates of period t shock
effects on the level of house prices is shown in Panel (a) of Figure 5. The graph shows the cumulative
effect of period t network house price changes on focal city house prices at different horizons h,
where the h = 1 estimates correspond to contemporaneous price effects shown previously in Column
6 of Table 4. As the graph shows, the spillover effects increases for two periods past the initial
impact, and then levels out. The long-run effect of a spillover shock in the fifth year (four years
after the initial shock) is 0.63 and statistically significant.43 This means that an exogenous house
price change of average size 10 log points in city i’s migration network causes a 6.3 log point change
in city i house prices in the long run, about 2.7 times the initial impact in period t. This highlights
that effects operating through a migration channel may have a delayed impact as frictions prevent
workers from moving instantaneously. However, the shape of the dynamic effects graph suggests
that most of the long-run spillover effect has been realized 1-2 years after the initial shock.

4.1.2 Additional house price effect specifications and robustness checks

This section shows that the baseline result of significant causal spillover effects on house prices
is robust to accounting for heterogeneity in land constraints for the affected cities, as well as
allowing for autocorrelation in house prices. Moreover, I show that including the full network of
migration links in the analysis – rather than excluding commuting distance neighbors – if anything,
strengthens the result.

Heterogeneity in spillover effects Above, I established that house price shocks in a city’s
migration network increase that city’s house prices. However, the effect of these spillover demand
shocks on each city might differ based on the degree to which it has elastic housing supply (Glaeser
et al., 2008). To test whether there is heterogeneity in this regard, I allow the network spillover
effect to vary by city in the form

ηnwi = ψL + ψlandL xlandi ,

43See Column 1 of Appendix Table A3, which shows the numerical estimates for the long-run effects plotted in
Figure 5.
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where xlandi is the city share of land unavailable for construction, which proxies for geographic
constraints to housing supply (Saiz, 2010; Lutz and Sand, 2019). The coefficient on the interaction
term should be positive if the housing supply function in response to spillover shocks is steeper for
cities that are more land-constrained.

The results are shown in Column 1 of Table 5. Here, I include the same control variables as in
the baseline specification, with the exception of the focal city wage shock inter action with land
constraints: Including this interaction as a control variable would remove most of the heterogeneity
in responsiveness to shocks that we are interested in. That is, I cannot precisely identify the
differential effect of network spillovers, while holding the differential impact of direct wage shocks
constant – and it would be difficult to interpret such an estimate.44

The coefficient on the constraint interaction term is positive and significant at a 1% level. That
is, cities that are more constrained experience stronger house price responses to network spillovers.
To interpret the magnitudes of this heterogeneity, note that it implies that a one standard deviation
change in the unavailable land share of ∼ 22 ppt would increase the short-run spillover elasticity
by about 0.22 ∗ 0.42 ≈ 0.09, or about 39% of the original contemporaneous spillover estimate of
0.23 (see Column 6 of Table 4).

The house price effects over time when allowing for heterogeneity are shown in panels (c) and
(d) of Figure 5. The results show that constraints increase the house price response even more in
the long-run than in the short-run. This is in line with the intuition that, while both constrained
and unconstrained cities experience congested construction and housing markets in the short run,
land constraints additionally limit cities’ ability to adapt in the long run by expanding their housing
stock.

Allowing for house price extrapolation. It is possible that the identified house price
effects in some period t do not only reflect shocks in period t (or in previous periods) but also
are autocorrelated for other reasons. For example, if homebuyers are myopic and infer underlying
trends in housing demand from past changes (see, e.g. Glaeser et al. (2017)), then house price
changes may show extrapolative dynamics where house price changes in one period cause further
house price changes in future periods. This raises a potential issue for identifying the size of the
spillover effects: Part of the period t house price changes may be the result of past periods’ house
price changes, which would mean that the size of our contemporaneous effect estimates might be
biased.

To explore how such autocorrelation might affect the results, I amend the dynamic spillover
specification to be

h∑
k=1

∆ lnPi,t−1+h =αi + αt + η̃nwh ∆PNWit + β′hΓit + η̃xh∆ lnPi,t−1 + η̃nwxh ∆PNWi,t−1 + ξ̃P,cumi,t−1+h,

where I have added terms that allow house price changes in response to a period t shock to also
depend on lagged house price changes in city i given by ∆ lnPi,t−1 and lagged network house price
changes ∆PNWi,t−1. These lagged terms are likely to suffer from the same endogeneity issues as con-
temporaneous network house price growth. Therefore, I instrument for them in an analogous way,
adding two lags of the network shock instruments (with and without land constraint interactions)
and also the focal city wage shock interacted with its land constraint, to the set of instruments.

The estimated contemporaneous effect η̃nw1 under this specification is shown in Column 2 of

44In fact, when I control for this interaction, only the uninteracted effect coefficient of network shocks remains
significant, while the interaction is estimated not to have an additional effect, or a weakly negative effect.
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Table 5, and the full curve of dynamic effects is shown in Panel (b) of Figure 5. The estimated
contemporaneous spillover effect is not significant, but the cumulative effect becomes significant by
the second year after the shock. That is, some of the effect in the initial year from the long-spillover
shock is attributed to extrapolation from past shocks. However, the long-run effect is very similar
to that found without allowing for autocorrelation, suggesting a long-run passthrough from the
migration network of 0.63 (see Column 3 of Appendix Table A3) that is almost identical to the
baseline long-run effect.

The role of migration distance. One concern with the baseline specification may be that
I am restricting the migration network for each city to not include other cities that are less than
150 miles away. As the size of migration flows is in part driven by distance (see the estimates
in Table 2), this may preclude a substantial share of migration flows from being considered in
these estimates. Moreover, as distance has a differential effect on different education groups,45 the
migration network constructed from longer-distance flows may select for the effect of particular
workers’ migration.

To analyze the role of expanding the migration networks to include short-distance flows, I repeat
the baseline effect estimation of Column 6 in Table 4 for migration networks defined at different
distances. The results of this exercise are shown in Appendix Table A2. The minimum distance
of included cities declines from the right to the left in the table, with Column 1 showing estimates
for the full migration network. The spillover effects for short-distance migration networks become
larger as more cities are included, with the full network IV coefficient in Column 1 being three
times as large as the baseline estimate in Column 4. Moreover, the sample size increases as the
migration network is expanded because some smaller cities without long-distance migration flows
are represented in the sample. Notably, the strength of the instrument reflected in the 1st-Stage
F-statistic declines in spite of the larger sample size when we include all cities in the network.

These effects are aligned with the original rationale for excluding short-distance migration:
spillover effects between neighboring cities may operate through a variety of channels that do not
require migration, as their labor markets and housing markets may partially overlap. Therefore,
the effect of interest which operates through migration spillovers is more precisely identified at a
distance that ensures that workers would have to move residences in order to respond to economic
shocks in other cities. While the short-distance effects would imply a larger role for spillovers, I
will therefore conservatively rely on the long-distance migration network estimates in Column 4.

4.2 Testing the Spillover Mechanism

If migration flows and their impact on housing demand are the mechanism through which house
price changes propagate, we should be able to observe spillover effects on other characteristics
of city i in line with the house price effects documented in the previous section. This section
documents that house price spillovers are accompanied by large effects on migration and credit
variables in affected cities that support the proposed spillover mechanism.

4.2.1 Spillover effects on population

For the spillover effects to operate by increasing net migration flows as a result of other cities
becoming more expensive, the population in the affected city should increase when house prices
increase as a result of the shocks. I can test this prediction of the mechanism by estimating the

45Compare Columns 2 and 3 in Table 2.
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cumulative network spillover effect on population as a result of net migration in the same way as
we estimated the cumulative house price effects, but with city i’s cumulative net migration rate in
the IRS data as the dependent variable.46

The estimates of the contemporaneous effect of network house prices on population changes
as a result of net migration are shown in Column 3 of Table 5. In line with the model prediction
that the network house price effects are transmitted through migration, I find that the network
effect on population is positive and significant. The coefficient estimate for the contemporaneous
network house price effect on net migration is 0.05 for the unrestricted migration network. This
suggests that a 10 log point increase in house price growth in a city’s migration network would
drive a contemporaneous increase in the net migration rate of 0.5 ppt.

Long-run effects on population The dynamic effects on population (cumulative sums of log
population changes from net domestic migration) are shown in Panel (a) of Figure 6. The graph
shows that a 10 log point increase in network house prices in period t leads to an increase in local
population by 1.9 log points 4 years after the shock.47 This means that the long-run population
effect almost quadruples the contemporaneous effect shown in Table 5. The dynamic effects show
that most of this increase has been realized 1-2 years after the initial shock, in line with the time
pattern of house price effects.

Migration elasticity of house price growth. If we assume that net migration is the main
transmission channel of house price growth between cities in the same migration network, we can
compare the effect estimates for net migration and house price growth to get a rough estimate of
the implied elasticity of house price growth with regard to population changes. Comparing the
effect estimates for house prices and population, I obtain implied elasticities of house price growth
with regard to population growth of about 0.23/0.05 ≈ 4.6 in the short-run (Column 6 of Table 4
and Column 3 of Table 5), and 0.63/0.187 ≈ 3.4 in the long-run (Column 1 and 4 of Table A3).

To put this elasticity in context, I compare this magnitude to the cross-sectional relationship
between migration and house price growth during recent periods (see Appendix Figure A6). Com-
paring the change in average net migration rates and house price growth for each period to their
values in 1991-1999, a 1 log point increase in the net migration rate was associated with increases
in house price growth of 4.1 log points during the 2000-2007 boom, 2.1 log points during the bust
2008-2012, 1.9 log points during the 2012-2017 boom, and 2.8 log points during the 2000-2017 pe-
riod as a whole. While these correlations are not directly comparable to my causal effect estimates,
they suggest that the implied house price elasticity with regard to net migration of my spillover
IV estimates is not far from historical relationships.

Reasons for moving. As additional qualitative evidence of why workers move between cities,
I provide evidence from the Current Population Survey in Appendix H.3 on stated reasons for
moving among migrants in the U.S. I find that housing reasons dominate among within-county
migrants, while housing is stated with similar frequency as family or employment among moving
reasons for inter-county migrants. Moreover, migrants moving for housing reasons are especially
prevalent during the housing boom of the 2000s, and migration for housing reasons is an important
driver of the variation in inter-county migration over time – in line with the migration spillover
mechanism proposed in this paper.

46Note that migration flows are sufficient but not necessary for the spatial location choice mechanism to operate
as suggested. In theory, if all cities were perfectly supply-constrained, any additional demand to migrate there
would raise house prices until the excess demand by migrants was eliminated. That way, house price changes could
propagate in equilibrium even with only modest or no migration flows being observed.

47See Column 4 of Appendix Table A3 for the point estimate.
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4.2.2 Mortgage credit and construction effects

To highlight the key channels for how extensive margin increases in population could affect the
housing market, this section estimates spillover effects on local mortgage lending and construction.
I show that mortgage credit increases as a result of migration spillover shocks and that the dynamics
of construction rationalize the house price increases.

Mortgage lending. To measure the effects on mortgage markets, I compute the number and
dollar volume of purchase mortgages originated annually in each CZ in HMDA data. Columns 5
and 6 of Table 5 show the effects of the network house price shock on the log of housing purchase
mortgages originated, as well as log housing purchase lending volume.

The results show that migration network spillovers significantly increase local lending activity,
with a ten log point increase in network house prices leading to a 23 log point (≈ 26%) increase
in the number of purchase loans originated. Mortgage lending volume in USD (see Column 6)
increases more than proportionally by 26 log points in response to a 10 log point shock, suggesting
that average loan size is going up. In part this can be attributed to the fact that house prices are
rising as a result of the network spillovers, but it is also consistent with other explanations, for
example that migrating out-of-town buyers overpay as a result of being less well-informed (Chinco
and Mayer, 2016).

Is this a plausible effect size? We can benchmark this effect by comparing it to the spillover
effects on migration. In my HMDA sample, an average city and year see 1.1 mortgages originated
per 100 residents. This means that the short-run increase in population of 0.5% that is estimated to
result from a 10 log point network shock, multiplied by a U.S. homeownership rate of 67% in 2020,
and divided by an average household size around 2.5,48 should result in new loans corresponding to
about 0.5× 0.67/2.5 = 0.13 loans per 100 residents, or a 12% increase over existing loan volume.49

Of course, lending to existing residents would also be expected to increase as a result of the impact
of spillover shocks on house prices and within-city moving activity, and the total effect on the
level of population in the long-run is four times larger than the short-run estimate used in this
calculation. Taking into account these possible variations, the mortgage origination effect size
appears plausible.

The dynamic effects on housing credit variables also behave in line with the migration and
house price dynamics, with Panels (c) and (d) of Figure 6 showing the effect on new purchase
mortgage originations and mortgage lending volume at different year horizons. The effects on the
number of mortgages originated persist for several years but decline in magnitude to close to zero
once population levels stabilize. The positive effect on lending volume also diminishes over time
but remains significantly higher in the long run, consistent with the fact that house prices remain
elevated in the long run as well.

Construction. Additional evidence on the changes in housing demand in response to net-
work house price shocks comes from effects on the construction sector, measured by changes in
construction permits issued. Column 4 of Table 5 and Panel (b) of Figure 6 show that spillover
shocks increase construction, but only with a lag, as the positive effect only becomes significant

48This analysis assumes that the additional population has average characteristics and that all homeowners
take out new mortgages. Average characteristics are from Census data at https://www.census.gov/housing/

hvs/files/currenthvspress.pdf and https://www.census.gov/data/tables/time-series/demo/families/

households.html.
49This may be an underestimate of the impact, as movers in the Current Population Survey for 1990-2017 are

less likely to be married than non-movers (30% vs. 42%) and therefore might have a smaller family size.(Source:
Author’s calculation from CPS March samples obtained from IPUMS.)
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one year after the initial shock.50 The long-run effect on annual housing unit permits of a 10 log
point network house price change is about 27 log points (≈ 31%).

While this might seem large, it is important to put it in perspective on a per capita basis: over
the 1990-2017 period, the Census reported an annual average of around 0.46 housing permits per
100 U.S. residents.51 So, if net migration tends to increase the local population by ∼1.9 ppt in
the long run as a result of a 10 log point network house price shock, and applying a household
size of 2.5, then this implies a need for 1.9/2.5 = 0.76 additional new units per 100 residents,
or 0.76/0.46 = 165% of average permit volume. Spreading this additional construction volume
over 5 years, for example, the average city would have to increase annual construction by 33% to
accommodate the increase in population – which is very close to the long-run construction effect
that I have estimated.

The relatively large increases in construction required, relative to normal building volume,
for even modestly sized population changes also rationalize why I find large house price effects of
migration spillovers even in less geographically constrained cities: if a 1.9 ppt increase in population
corresponds to a > 33% increase in construction volume over 5 years, it does not seem unreasonable
for house prices to increase by 6.3 log points as the construction sector moves up the supply curve.

Housing vacancies during housing booms. The claim that congestion in construction
markets plays an important role in understanding the propagation of house price increases across
cities through migration contrasts with other narratives about how “overbuilding” was an impor-
tant feature of the housing boom of the 2000s.52 To provide additional evidence that congestion in
construction markets plays a role in understanding the cross-section of housing booms, I therefore
look at the relationship between vacancies and house price growth.

If migration congests housing markets, a given vacancy decline should be associated with a
greater house price increase – and more so in more supply-constrained markets because they take
longer to produce enough housing to accommodate the population increase. In contrast, under a
narrative where overbuilding occurs during a boom and eventually attracts in-migration, vacancies
should be positively associated with house price growth – and more so in constrained cities, as
building is less responsive to a given house price increase.53

To test these predictions, I compute the change in vacancy rates and house price growth for
housing boom periods relative to a baseline period, and compare more or less land-constrained
cities.54 The graphs of the relationship between vacancies and house price growth are shown in
Figure 7 for owner-occupied housing (rental housing results are shown in Appendix Figure A8).

Vacancies are systematically lower in cities with higher house price growth in both periods -

50Note that this could either reflect a slow response by builders to rising house prices, or delays induced by the
length of the permitting process.

51Calculated by dividing total units permitted 1990-2017 from https://www.census.gov/construction/bps/,
by total U.S. population from https://fred.stlouisfed.org/series/POPTOTUSA647NWDB.

52As an example of this view, see e.g. Haughwout et al. (2012) (p. 70): “While it is now clear that too much
housing was built in the United States in the boom phase, identifying how much and where overbuilding occurred
remain important issues...Our results suggest that 3 to 3.5 million excess housing units were produced during the
boom. Excess housing production was a national phenomenon, but excess supply is positively related to housing
supply elasticities”

53On this topic, Haughwout et al. (2012) note that “in markets with relatively elastic supply, bubbles should result
in more new residential investment and consequently less of a price response. ”

54The baseline period is 1991-1997 and the boom periods are 2000-2007 and 2012-2017. This comparison can
be computed for 98 CZs, which have data for all time periods. I group these cities into those with above- and
below-median housing supply constraints based on their share of land unavailable for construction (Saiz, 2010; Lutz
and Sand, 2019).
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and this relationship is statistically significantly more negative in constrained cities. That is, the
congestion effect of in-migration is worse if housing supply is harder to come by. This means that
the evidence from vacancies is more consistent with migration causing house price growth through
a shortage of housing supply than a speculative boom that leads to overbuilding which then entices
migrants.55

Time-to-build delays. Another piece of evidence highlighting the significance of short-run
congestion in construction markets is that time-to-build delays for residential housing construction
increase during housing booms. This empirical pattern is shown in Figure 7. Here, I use data from
the Census Survey of Construction to estimate average time-to-build from start to completion of
construction projects completed in a given year for different regions. Note that all regions show
increasing construction delays during the 2000s housing boom, falling delays during the Great
Recession, and then increasing delays again during the recent 2012-2017 run-up in house prices.56

From the literature on investment cycles, we know that time-to-build delays for durable invest-
ment goods, such as dry bulk shipping vessels, can lead to large price cycles and predictable mean
reversion in returns. The reason for this might be that individual firms do not take into account
the endogenous investment behaviour of their competitors (Greenwood and Hanson, 2015). In
the residential construction setting, this would correspond to developers responding to the initial
housing market tightness documented above with eventual overbuilding at the end of the cycle –
which would explain the narrative around the housing boom that focuses on the latter. The reason
might be that investors neglect to account for the forthcoming additional supply of housing from
other sources – either other builders, or the displacement of existing residents that I document in
Section 4.2.3 below. At the same time, Kalouptsidi (2014) shows that procyclical time-to-build
delays can exacerbate price volatility even in a rational model because investors cannot invest fast
enough to restore equilibrium prices. Here, the existence of such time-to-build delays in hous-
ing construction provides an additional explanation for why housing supply does not immediately
accommodate the migration spillovers on housing demand.

4.2.3 Educational displacement

This section provides evidence that economic booms that increase house prices can cause outflows
of “displaced” workers. In particular, I focus on showing evidence of migration that results from
college-educated workers moving into expensive cities and non-college educated workers moving
out. Differences between education groups are salient because recent labor market trends have
often benefited knowledge-intensive industries (Eckert et al., 2019).57

Displacement and housing supply constraints. First, I look at evidence that inflows of
one education group can lead to outflows of the other group in cities with constrained housing
markets. In Panel A of Figure 8, I plot gross out-migration rates of non-college workers (as %

55Note that I am not saying that Haughwout et al. (2012) and others are incorrect in remarking upon an increase
in vacancies during the boom periods in the country as a whole. It simply turns out that, in the cross-section, the
highest vacancy rates were not in the cities where the boom was happening, making it unlikely that speculative
overbuilding was driving the vacancies - a fact that is obscured when looking at national averages. See Sumner and
Erdmann (2020) for a similar argument.

56In a structural model calibration, Oh and Yoon (2020) show that these time-to-build increases at the height of
the 2000s housing boom can be attributed to construction bottlenecks, whereas the continuation of delays at the
beginning of the bust arises due to investor uncertainty about the housing market.

57Section 2.2 also provided additional support for group differences in the form of evidence that education groups
may differ in their migration networks.
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of local group population) over gross in-migration rates of college-educated workers by CZ for
2005-2017.58 The graph shows a strong positive correlation between gross in- and outflows of
these different education groups.59. If this correlation is in part mediated by housing markets,
we should see differences in the degree to which college inflows result in non-college outflows in
supply-constrained cities. In Panel B, I show only cities that fall into “high” or “low” constraint
categories based on whether the local share of land available for construction (Saiz, 2010; Lutz
and Sand, 2019) and regulatory constraints (Gyourko et al., 2019) are both above or both below
median. The fitted line has a significantly steeper slope for highly constrained cities, consistent
with larger house price increases leading to a greater displacement by inflows.60

Migration flows by education and housing cost. A corollary of this mechanism based on
displacement is that workers in different education groups should on average be moving towards
cities with different levels of housing costs. I test this by comparing house prices in origin and
destination cities of migrants in different education groups. My measure of the expected change
in quality-adjusted housing costs PQ

it for migrants of each group s in year t is
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where m̂ik
st are imputed flows by education type from city i to city k.61 This measure corresponds to

the average difference in CZ house prices between destination and origin city across all migration
flows for education group s.

The estimates of this term for the 2005-2017 period are shown in Panel C of Figure 8. As the
time series graph shows, college-educated workers are consistently more likely to move towards
more expensive cities than away from them during this period. In contrast, non-college workers
on average move towards cities that are ∼ $20K less expensive than where they are coming from
at the peak of the housing boom. This displacement dynamic weakens during the recession and
then picks up again in recent years. These data show that workers of different education levels are
moving in opposite directions along the house price gradient, consistent with non-college workers
being displaced from expensive cities towards cheaper locations as college workers move in.

58I use American Community Survey gross migration data, aggregated to commuting zones, by education, for
2005-2017. Annual migration data by education is only publicly available from the ACS for these years.

59This fact in itself is not novel, as it turns out that some cities experience consistently more population turnover
than others (Coate and Mangum, 2019): gross in- and outflows are higher in high mobility cities, such as Las
Vegas, NV, and Phoenix, AZ, than in low mobility cities like Providence, RI, or Philadelphia, PA. This leads to
inflows being correlated with outflows in the cross-section of cities even within education groups, as Appendix
Figure A9 confirms. This is also in line with other evidence, e.g. by Couture and Handbury (2017), that young
college-educated workers have been more likely to move into some parts of urban downtown areas than non-college
educated workers in recent decades. The contribution here consists of linking this displacement to housing markets.

60In Appendix Section H.5, I show that a similar dynamic can also be found when looking at the superstar cities
case study: As a result of displacement, superstars experienced particularly rapid changes in their college share
during the 2000-2007 boom, relative to other large cities.

61For this analysis, I follow Albouy and Ehrlich (2018) in constructing quality-adjusted housing cost indices PQ
it

for each city, by adjusting raw house prices using hedonic regressions on housing characteristics – see details in
Appendix F.7. Moreover, Appendix F.6 shows how I construct imputed migration outflow shares µikst by education
group s from city i to city k, for the 2005-2017 period, using ACS data. Imputed total flows by education type are
then computed as m̂ik

st = µikst ∗ Lis,t−1, where Lis,t−1 are workers older than 21 years in the ACS data of education
group s, and in city i in the previous period.
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4.3 Importance of migration spillovers for house prices

While the migration spillover mechanism is general, in the sense that any shock to an origin city’s
housing markets can propagate through migration flows to other cities, this section considers the
effects of two particular shocks through this spillover channel. I show that shocks to other cities
in the form of interest rate effects on house prices, as well as from exogenous wage changes, induce
sizeable spillover effects on other cities that can be quantified using my estimates. Moreover, I
show that migration links are useful for predicting co-movement in house prices among cities in
general. However, the reduced-form estimates do not allow for studying the aggregate effect of
changes in mobility on house price dynamics – that question will instead be addressed by the
structural model estimation.

4.3.1 Quantifying spillovers from “easy credit” and wage shocks

To get an estimate of how important spillover effects are for understanding the effect of historical
shocks on house price growth patterns, I estimate the implied spillovers from well-known house
price shocks in the literature. This quantification also illustrates how the migration spillover
methodology can be applied more generally to understand the spatial externalities from localized
shocks. I focus on shocks to house prices in the run-up to the housing boom of the 2000s that
consist of (1) easy credit in the form of low real interest rates, and (2) industry wage shocks.

The effect of decreases in the user cost of housing as a result of lower real interest rates is
frequently cited as one of the causes of increases in housing demand in the late 1990s and early
2000s, although the exact size of the effect is subject to debate (Himmelberg et al., 2005; Glaeser
et al., 2012). Here, the focus is on the differences across cities in the effect of interest rate changes
on house prices that result from differences in land constraints interacting with housing demand
changes. I follow Glaeser et al. (2012) in estimating the size of these effects.62 Similarly, many
researchers have identified differences in city exposure to industry wage trends interacting with
supply constraints as an important driver of differential house price changes.63 Here, I show the
extent to which the spillovers from these shocks can explain part of the house price dynamics in
other cities.

For each shock, I first estimate a “first stage” consisting of the effect of that shock on house
prices in other cities that are part of a focal city i’s migration network, controlling for the baseline
controls that are also applied in my spillover regressions, as well as any direct effects of the shock
on city i. Then, I apply the baseline short-run spillover effect estimate ̂̃ηnw (see Column 6 of Table
4 to the predicted exogenous 1995-2007 change in network house prices for each city i. The result
is an estimated spillover effect on city i for 1995-2007 from each shock to other cities, which I then
compare to the actual house price growth and house price beta of city i over that period.64

The ability of these predicted spillover effects to explain actual CZ house price growth in 1995-
2007 is shown in Figure 9. Panels (a) and (b) show that the cross-sectional variation in spillovers
from interest rate effects and wage shocks in other cities can explain 32% and 12%, respectively,

62See Appendix Section F.3 for details on constructing the interest rate spillover shocks.
63See, e.g. Saiz (2010); Paciorek (2013); Diamond (2016).
64As the wage shocks were also used in the spillover estimation, their construction closely follows the IV method-

ology discussed earlier: Table 3 shows the first-stage estimates used to predict the effect of the (residualized)

instruments NWPB,residit and NWPBx,residit on network house price growth, and the direct effect controls for city i
consist of the wage shocks to city i and their interaction with land constraints that are already included in the set
of baseline controls.
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of the variation in CZ house price growth over this period. Moreover, the predictive linear fit for
the spillover from each of the shocks has a positive and significant slope.65 Of course, particular
shocks to other cities can only ever partially explain the house price growth in city i that is caused
by all shocks – observed or unobserved – together.

To understand whether these spillovers contribute positively or negatively to the house price
beta in affected cities, I compute national trend betas for the 1995-2007 period for each city. The
effect of the spillovers on these betas is shown in Panels (c) and (d). Again, the effect of the
predicted spillover shocks on the cross-section of betas is positive and significant for both interest
rate and wage shock spillovers.66 A simple regression of betas on the residualized spillover shocks
shows an R-squared of 32% and 14% for the interest rate and wage shock spillovers. Of course,
this analysis could be extended to other shocks that play a part in determining house prices over
this time period, providing a tool for other researchers interested in exploring spatial spillovers
arising from a shock of interest.

4.3.2 Migration links as a predictor of house price correlations

This section confirms the importance of spillovers through migration links more generally by show-
ing that migration links are good predictors of which cities experience correlated house price move-
ments, and that they have predictive power for house price correlation that is not explained by
other links, such as similarities in industry structure.

Sinai and Souleles (2013) first noted that pre-Great Recession U.S. migration tended to occur
between MSAs that have correlated house price cycles. This correlation can be explained by the
spillover mechanism that I propose in this paper: If migrant flows through migration networks
transmit local house price dynamics, we would expect house prices to be correlated more between
cities that have stronger migration links. I expand on the analysis of Sinai and Souleles (2013) by
showing that migration links are in fact a better predictor of house price correlations than other
plausible measures of inter-city links.67

As a first step, I compute the pairwise correlation of house price growth between CZs over 1990-
2017, using the log change in the FHFA repeat-sales index as my measure of house price growth.
Then, I compute for each CZ i the weighted average correlation with all other CZs k ∈ N , which
is given by

Em
i (corr(∆ lnPi,∆ lnPk)) =

N∑
k=1

wmik · corr(∆ lnPi,∆ lnPk).

The weights wmik represent a particular measure m of inter-city links considered. If the inter-city
link measure m better predicts pairwise house price correlations, the link-m-weighted expected
correlation should be larger. The weights are always normalized to sum to one.

My main measure of links reflects migration connections: the average share of all migrants out
of city i in the IRS migration flow data that move to city k. I compare the ability of migration

65Note that the predicted spillover effects are residualized with regard to direct effects of the shocks and all baseline
controls, which means that the absolute magnitude of these spillovers cannot be straightforwardly interpreted.

66Note that it is not automatically the case that a positive house price growth effect coincides with a positive beta
effect: If shocks to a city’s migration network are positive on average but timed in a way that correlated negatively
with national house price growth, the house price growth and beta relationships can have slopes of opposite signs.

67In addition, I also expand on the analysis by Sinai and Souleles (2013) by including the decade since the Great
Recession in the time frame, and expand the sample geographically by including commuting zones that cover the
entire continental U.S.
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weights to predict house price correlations to a number of other competing measures of inter-city
links: (1) An inverse-distance weighted measure that reflects geographic proximity; (2) A social
connectedness index (SCI) based on Facebook friendship links between geographic areas that
reflects the strength of social networks between cities (see Bailey et al. (2018b)); (3) A destination
population-weighted measure of house price correlations that reflects the outsized role of large cities
in the U.S. economy and therefore perhaps also in housing cycles; (4) A measure of the similarity
in industry structure between cities;68 (5) An equal-weighted measure that simply reflects a city’s
average correlation with other cities’ house prices; (6) A measure of trade flow links between cities
that represents industry linkages and the propagation of economic shocks through input-output
networks.69

The expected house price correlation for each CZ under these different weights is shown in
Figure 10. The graph sorts CZs by their migration-weighted house price correlations (which
therefore form a line), and then plots for each CZ i the expected house price correlation with all
other CZs under the alternative weights described above. A higher value indicates that the link
captured by those weights is more strongly associated with a co-movement in house prices.

As is clear from the graph, the correlation in house prices between cities that have stronger
migration links is almost everywhere larger than the house price correlation predicted by distance,
social network links, city populations, industry similarity, trade flows or equal-weighting all other
cities. This visual result is confirmed by the average expected correlations for each link shown in
the legend of the graph. This predictive outperformance suggests migration links can not simply
be considered as proxies for one of these other city connections.70 For example, even though
migration links are likely to be at least in part correlated with economic linkages between cities
– which are proxied here by the relative value of trade flows – the fact that migration links are a
better predictor of house price correlations than trade links suggests that the explanatory power
of migration links cannot be reduced to being merely a reflection of a trade channel.

To quantify the predictive importance of migration links, in Appendix Section H.2, I run
horserace regressions between these different link measures and find that migration links have
strong and significant predictive power for house price correlations even when accounting for all
other measures together.71 The implied effect of stronger migration links (controlling for all other
links, as well as the overall tendency of cities to send or receive migrants) is that an 10 ppt
increase in the share of migrants from city i that go to city k increases the correlation in house
prices with that city by 6.7 ppt. Note that this is very similar to the correlation in house price
growth implied by the causal spillover effect estimate: in the migration network regressions, if the
migration exposure to a city increased from zero to 10 ppt, then the long-run spillover elasticity
of 0.63 (see Column 1 in Table A3) suggests that there will be a 6.3 ppt long-run correlation
with house price shocks in the upweighted city due to spillover effects. While these analyses are
not directly comparable due to the different time horizon, approach, and migration weights, it is
encouraging that this predictive analysis yields a similar order of magnitude for the importance
of migration links. Moreover, the shifts in migration shares considered here are necessarily partial

68More details on these measures can be found in Appendix Section H.2.
69See Appendix Section F.9 for details on the construction of this measure, which reflects the share of a city’s

domestic value of outgoing trade flows that is going to another city.
70In Appendix Figure A7, I repeat the same analysis omitting any CZs within a 50 or 150 miles distance of one

another from the calculation of the averages to capture only the long-distance effect via these links - and find very
similar results.

71The only measure that is not directly included in the horseraces is the trade flow link measure, which is only
available for a small subset of CZ pairs, representing < 10% of the full sample.
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equilibrium changes, as they do not account for second-order effects on other cities. In order to
assess the full general equilibrium impact of changes in mobility, I will make use of the structural
dynamic spatial equilibrium model discussed in the following sections.

5 Dynamic Spatial Equilibrium Model

5.1 Model overview

The previous sections showed the reduced-form causal spillover effect of cities on one another.
Those effect estimates represent average effects over the time period (1990-2017), taking the effect
of structural parameters, such as house price elasticities and migration costs as given. However,
migration costs have likely changed over time, contributing to a secular decline in domestic U.S.
migration rates (Molloy and Smith, 2019). Similarly, political decisions that increase housing
supply constraints, such as zoning rules, seem to have led to lower elasticities of housing supply
over time (Ganong and Shoag, 2017; Gyourko et al., 2019), engendering a recent backlash in the
form of the ”yes in my backyard” (YIMBY) movement which calls for reductions in housing supply
constraints to improve housing affordability (Dougherty, 2020).

At the same time, the reduced-form estimates do not capture any higher-order effects from
spillovers: when migrants cause an increase in house prices at their destination, this may in turn
cause some local residents to move on, leading to migration into another set of cities, and so on.
As a result, the effects of migration on the aggregate pattern of house price growth responses
to an economic shock depend on the full network of city migration links, including higher-order
connections. To understand what role changes in migration costs and house price elasticities play
in contributing to the aggregate distribution of house price growth, – and to understand the effect
of the aforementioned trends – I need to model the equilibrium mechanism that transmits shocks
between cities. This mechanism includes workers’ endogenous location choices, which are the
driving force for migration flows that respond to house price increases.

I therefore develop a quantitative dynamic spatial equilibrium model that captures the key
mechanisms for understanding house price spillovers effects: On the one hand, the model builds
on standard location choice models with heterogeneous worker groups (e.g. Diamond (2016)),
but incorporates methods from the dynamic discrete choice literature to allow for forward-looking
migration choices, as workers might anticipate future trends in city characteristics. Similar methods
have recently been applied in a location choice context by Diamond et al. (2017), Coate and
Mangum (2019), and Almagro and Domı́nguez-Iino (2020), among others. In addition, I allow for
a rich structure of different bilateral migration costs between cities that shapes differences in cities’
migration networks and exposure to other cities’ shocks, using insights from Caliendo et al. (2019)
to show how to estimate this model without knowing the level of moving costs.

On the other hand, the model incorporates heterogeneous housing supply constraints. As cities’
housing markets will differ in the degree to which changes in housing demand drive up house prices,
this is an important part of understanding differences in house price dynamics across cities. As
far as I know, this is the first application of a dynamic location choice model with heterogeneous
housing supply to inter-city migration in the U.S.

To simulate what would happen under different scenarios for migration costs and supply con-
straints, I build on recent innovations in estimating counterfactuals in dynamic location choice
models. Ahlfeldt et al. (2020) noted that in dynamic spatial models with migration costs observed
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allocations may not be stationary as long-run equilibrium is not immediately attained. Nonethe-
less, they show that comparative statics can be computed by estimating and comparing stationary
equilibria implied by baseline observables and counterfactuals. I adapt this idea to my model
with repeated location choices and flexible forward-looking expectations, showing that one can
use the “dynamic hat” methods of Caliendo et al. (2019) to solve for stationary equilibria. The
counterfactual transition paths to these stationary equilibria can then be compared to understand
the equilibrium impact of changes in parameters.

Along the way, I develop a methodology for working with a limited sample of migration data.
In the U.S. context, origin-destination data on migration flows is available from multiple data
sources that have different strengths and weaknesses. I use an “empirical Bayes” approach to
impute smoothed migration probabilities from censored flow data. I reduce the noise of migration
flows by education group by using machine learning and additional information about flow totals to
generate predicted bilateral flows. These predicted flows are then combined in a “Bayes shrinkage”
approach with the raw data to reduce the noise that comes from a limited sample size.

To be able to extend counterfactuals to past time periods where detailed flows by education
group are not observed, I also develop a method to use the model structure together with observable
city characteristics and total migration information to simulate the model backwards and impute
unobserved flows by education groups that are consistent with the observed data.

This section will present the dynamic spatial equilibrium model. The following section then
discusses how to estimate and calibrate the key model parameters. After that, I will discuss the
parameter estimates, and proceed to explain the methodology for simulating counterfactuals in this
model before considering the scenarios of interest, in which I show the effect of different migration
costs and changes in housing supply constraints on house price dynamics.

5.2 Within-period worker preferences

Flow utility. All workers live in some city i ∈ N at the beginning of period t. They have log
utility over a Cobb-Douglas aggregator function of tradable consumption goods with uniform prices
across all locations, and local nontradable housing, with per-period unit cost Qit. Workers belong
to different skill groups s ∈ S, which differ in their preferences for amenities and the expenditure
share of nontradables αs, both of which have been found to affect group-specific location choices
(Bayer et al., 2016; Diamond, 2016; Almagro and Domı́nguez-Iino, 2020). The price of these
nontradables is assumed to vary with housing costs.

The indirect flow utility for a worker ω in location i and of type s can therefore be written as:

Uist(ω) = lnAist︸ ︷︷ ︸
Amenities

+ ln W̃ist︸ ︷︷ ︸
Work utility

−αs lnQit︸ ︷︷ ︸
Housing cost

(8)

. Here, W̃ist is the expected local wage index and Ait captures residential amenities from living in
i.

Heterogeneity. To model the heterogeneity among workers in their attachment to different
locations, I assume that in each period workers draw an idiosyncratic location amenity shock
zist(ω) for each location i, which is Type 1 extreme value (Gumbel) distributed with variance π2

6
,

which is scaled by parameter θs. A smaller θs corresponds to less heterogeneity in idiosyncratic
preferences among workers and therefore a higher sensitivity to differences in common factors
between locations. The idiosyncratic location amenity is realized right after the moving decision.
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In addition, whenever a worker moves between two locations i and k, she has to pay an additive
and time-invariant moving cost τ iks in utility units in the same period. This moving cost can depend
on the skill group s, which means that migration networks can vary by group, in line with the
findings shown in Section 2.2 that college and non-college educated workers differ empirically in
the cost attached to overcoming differences in characteristics between origin and destination city.
This moving cost generates geographic differences between cities and is important for explaining
why the geographic distribution of shocks matters.

Industry choice. After choosing a location, each period workers also draw an idiosyncratic
industry preference shock ziιst(ω) and solve an industry choice problem of the form

max
ι

[Wiιt · ziιst] ,

where Wiιt are wages in industry ι ∈ I in location i, and ziιst is an industry preference shock. I
assume that this idiosyncratic industry preference shock is Fréchet-distributed with CDF

F (ziιst) = e−εsιiz
−a
iιst ,

where the scale parameter εsιi determines the average suitability of group s workers in industry
ι and location i, and the parameter a captures the inverse heterogeneity in industry preferences.
The means εsιi of these shock distributions vary by location and group but not over time. This
parameter reflects skill requirements in different industries: workers who have more education
may have to expend less effort to work in particular industries, and the same industry in different
locations may skew more or less towards favouring more skilled workers in terms of its work
conditions.

Conditional on having chosen location i, the probability that a group s worker chooses to work
in industry ι is therefore given by

πisιt =
W a
iιtεsιi∑I

ι=1W
a
iιtεsιi

. (9)

Importantly, location choices are made before the realizations of idiosyncratic productivity shocks
are drawn. Therefore, the relevant variable for group s location choices is the expected income
index W̃ist, which by the properties of the Fréchet distribution is given by

W̃ist = Ez[max
ι

[Wiιt · ziιstω]].

= Γ

(
a− 1

a

)( I∑
ι=1

W a
iιtεsιi

) 1
a

, (10)

where Γ(·) is the Gamma function. Solving for changes in this work utility index over time, it
evolves according to72

∆ ln W̃ist =
1

a
ln

(
I∑
ι=1

πisιt
W a
iιt

W a
iι,t−1

)
. (11)

72Note that this model could also be easily adapted to accommodate the possibility of unemployment as an
alternative “industry” that a worker might end up in.
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Model timing. To summarize, the timing in the model is illustrated in Figure 11: In each
period, a worker in location i receives the idiosyncratic location shock draws, chooses a destination
city k – which may be the same as the origin city – and executes the move. Next, the worker
receives an industry preference shock in the chosen location and picks an industry to work in.
Once that decision has been made, the worker pays moving costs, realizes the preference shocks,
and then works and consumes in the chosen location until the end of the period.

5.3 Forward-looking location choice

An important consideration in using annual data rather than decadal frequencies is that workers’
time horizons in evaluating which city to move to will likely also take into account future periods’
city characteristics. Therefore, I model moving decisions as forward-looking: Workers anticipate
their ability to make migration decisions in future periods as well as the future flow utility obtained
from different locations.

That is, workers consider the conditional value function υist of each location i when making
their moving decisions rather than only the flow utility. They solve the following problem:

max
k∈N


Conditional utility υist︷ ︸︸ ︷
Ukst︸︷︷︸

Flow utility

+ βE
[
V ks
t+1

]︸ ︷︷ ︸
Option value

− τ iks︸︷︷︸
Moving cost

+ θszks(ω)︸ ︷︷ ︸
Idiosyncr. location
preference: T1EV

 .

The conditional utility υist of location i for a group s worker after the location decision has been
made but before industries have been chosen is defined as

υist = Uist + βE[V is
t+1], (12)

where Uist is the flow utility defined in Equation 8, and the second term in this expression cor-
responds to the expected ex-ante value function for the next period. The ex-ante value function
is defined as the expected value, at the beginning of the period, of being in location i before the
idiosyncratic shocks are drawn:

V is
t = Ez

[
max
{k}Nk=1

{
υkst − τ iks + θszkst

}]
,

where the outer expectation Ez[·] is over the distribution of zkst.

Using the properties of the Gumbel distribution (see Hotz and Miller (1993)), we can rewrite
this expressions as

V is
t = θsγ + θs ln

(
N∑
k

exp(υkst − τ iks )
1
θs

)
(13)

where γ is Euler’s constant. The probability of deciding to relocate to any city k from city i can
be written in the standard logit form as

µikst =
exp(υkst − τ iks )

1
θs∑N

j exp(υjst − τ
ij
s )

1
θs

. (14)
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To express the location option value in terms of observables, we can take logs of the conditional
moving probability µikst for a particular destination choice k and rearrange to obtain

θs ln

(
N∑
k

exp(υkst − τ iks )
1
θs

)
= υkst − τ iks − θs lnµikst .

Then, substituting this expression into the ex-ante value function in equation 13, and using the
definition of the conditional value function, I obtain

V is
t = υkst − τ iks + θsγ − θs lnµikst

= Ukst + βE[V ks
t+1]− τ iks + θsγ − θs lnµikst︸ ︷︷ ︸

Non-optimal choice
adjustment

(15)

That is, the ex-ante value of having a choice of where to move to from city i can be written as the
utility obtained from a particular choice k (the first three terms), adjusted by the degree to which
k is suboptimal, which will be reflected in the actual probability of workers choosing k. This result
follows directly from the properties of the Gumbel preference shock distribution (Arcidiacono and
Miller, 2011).

This rewriting of the ex-ante value function in the dynamic discrete choice problem into the
sum of the certain value of a particular choice, and an adjustment term that is a function of
observable choice probabilities, has been used widely in the trade literature (e.g. Artuç et al.
(2010); Caliendo et al. (2019); Traiberman (2019)). Note that our choice of destination k was
arbitrary for this derivation. In the estimation below, I will use this fact to write the option value
of a location as a function of the value of choosing any arbitrary destination choice k, including
the origin location, adjusted by a function of the empirical migration share for that destination.
This is useful, because migration shares in future periods are empirically observable, even in finite
data.

5.4 Production and labor demand

Production technology. Firms in each industry ι are indifferent between workers of any group s
and produce output Yiιt that consists of tradable goods differentiated by industry. The production
technology uses local labor as the only input and has constant returns to scale:

Yiιt = XiιtLiιt,

where Liιt =
∑S

s Liιts is the sum of local industry ι employment across workers in groups s ∈ S.
Here, Xiιt denotes the local productivity of firms producing goods in industry ι. Moreover, I
assume that there is perfect competition in input markets such that workers earn their marginal
product.

Tradable goods demand. I model the local demand for differentiated tradable goods fol-
lowing Armington (1969).73 I assume that, within the tradables category, the consumption utility
in location i over which different groups s have Cobb-Douglas preferences is an aggregator of local

73This demand structure is common in the trade and economic geography literature – see, e.g. Arkolakis et al.
(2012), or Adao et al. (2019) for a similar recent application.
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industry good consumption of the form

Cit =
I∏
ι=1

Cγι
iιt, (16)

where Ciιt – the industry ι goods consumption in city i – is in turn an aggregator of the utility
obtained from the consumption of differentiated goods from other locations j given by

Ciιt =

(
N∑
j=1

(cijι)
σ−1
σ

) σ
σ−1

,

where σ ∈ (1,∞) and cijι is the consumption of industry ι goods from city j in city i. Trade is
assumed to be costless and product markets are competitive, so goods from a particular location
cost the same in all other locations.

Labor demand.We can also take into account the possibility of agglomeration effects from
greater employment, which have been previously documented in the literature (Diamond, 2016).
Assume that

Xiιt = X̃iιtL
α
iιt,

so productivity in each industry changes with the local employment level, and X̃iιt is the residual
local industry productivity. Then, local industry wage changes become

∆ lnWiιt = ηLD∆ lnLiιt +
1

σ
∆ ln D̃iιt, (17)

where D̃iιt =
(
X̃iιtPιt

)σ−1

γι summarizes local industry demand and productivity shocks, and

ηLD =
(
α(σ−1)−1

σ

)
. Here, Pιt is the composite price index for goods from industry ι. See Appendix

Section E.3.1 for details on the derivation.

Equation 17 is the labor demand equation that I will take to the data. As regards timing,
I assume that wages are determined at the beginning of the period, before migrants make their
location choices.

5.5 Housing markets

Housing valuation. An important limitation in U.S. housing data is the lack of a comprehensive
panel of rents at a city level at sub-decadal frequencies. However, in practice the user cost of
housing for households that are not homeowners depends on the level of annual rents, rather than
the level of house prices. Substituting changes in the latter for changes in the former implicitly
assumes that the valuation of houses is myopic and does not take into account other factors, such
as the expected future growth of rents. See Appendix Section E.3.2 for a discussion on what
different informational assumptions imply for the relationship between rents and house prices.

Nonetheless, the myopic pricing model is an important benchmark case because it corresponds
closely to the implicit assumption in most static spatial equilibrium models. For instance, in
constructing time series of changes in housing costs, rent data are often imputed as a constant
multiple of house prices (see, e.g. Diamond (2016); Ganong and Shoag (2017)), or it is assumed
that rents can be mapped directly into contemporaneous house prices using interest rates (e.g.
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Piyapromdee et al. (2014)). Similarly, spatial models in economic geography and trade often
employ models where prices for real estate clear the market each period but are not forward-
looking, such that per-period housing cost and house prices are the same (e.g. Ahlfeldt et al.
(2015); Caliendo et al. (2019); Sturm et al. (2020)).

Due to the data limitations discussed above, I unfortunately cannot assume fully rational
price growth expectations that are jointly varying across time and space. Instead, I assume that
valuations can vary over time nationally by a common factor αt, and can vary by a fixed factor αi
across cities – but do not allow for differences in local valuation trends as these cannot be identified
separately from the city-level effects that I am interested in. That is, I assume that

Pit = Qite
αteαi . (18)

Housing demand. The worker’s preferences over housing imply that housing expenditure is
a constant share αs of the wage bill for group s. Therefore, we can write real housing demand as

HD
it =

eαteαi

Pit

(∑
ι

∑
s

αsWιitLisι,t

)
,

where HD
it is the real quantity of housing demanded and Lisιt, is employment of group s in industry

ι.

Housing supply. Housing developers are assumed to be price-takers who sell housing con-
sumption units at marginal production cost. Individual developers are marginal with regard to
competition, but their output as a whole can be written in the form of a representative firm.
The local housing supply HS

it is assumed to be provided using a Cobb-Douglas technology that
combines perfectly mobile construction capital with local land and local construction productivity.
Differences in the local housing supply elasticity are generated by the assumption that the cost of
the local land input increases with the size of the total housing stock with a location-specific elas-
ticity. Solving the developer’s cost minimization problem (see Appendix Section E.3.3 for details),
the local inverse housing supply function can be written as

Pit = φiφt(H
S
it)

φHi , (19)

where the variables other than the housing quantity supplied are functions of model parameters
that only vary along the dimension indicated in their index.

Housing market equilibrium. Setting total housing demand equal to the housing stock, i.e.
HD
it = HS

it , the housing market clears at a price

Pit = φ̃iφ̃it

(
I∑
ι

S∑
s

αsWιi,tLis,ι,t

)φ̃Hi

, (20)

where the responsiveness φ̃Hi of house prices with regard to housing expenditures is higher if the
city is more land-constrained.74

74The parameters here are given by φ̃Hi =
φHi

1+φHi
, and φ̃i = κ

−1

(αK+αA)(1+φH
i

)

i , and φ̃it =(
(rKt )αKα−αAA α−αKK

) 1

(αK+αA)(1+φH
i

) e
(αt+αi)φ

H
i

1+φH
i .
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5.6 Transition dynamics

To summarize the model dynamics, this section characterizes what this model implies for the
transition dynamics of the economy between periods.

Given the current period employment distribution for each group across locations and indus-
tries, migration costs, wages, housing costs and house prices, location amenities, and local industry
demand and productivity fundamentals, as well as national house price valuation trends and expec-
tations of location option values, the economy evolves as follows: next-period employment levels,
wages, and housing costs across all locations i ∈ N , industries ι ∈ I and skill groups s ∈ S are
determined by

1. Workers choosing their location optimally when given the chance to migrate, such that flows
between cities are given by Equation 14, which depends on each location’s flow utility and
option value as defined in Equations 8 and 15. Then, employment in each location and group
evolves according to

Li,t+1 =
∑
s

Lis,t+1 =
∑
s

∑
k

µkistLkst.

2. Local industry-level wage changes are determined by the inverse labor demand in Equation
17, and the ex ante work utility index for each location and education group updates based
on Equation 11.

3. House prices are determined by the housing market equilibrium condition in Equation 20,
and house prices are linked to rent growth through the valuation function in Equation 18.

The structural parameters of this model consist of the vector {θ−1
s , ηLD, φ̃iH , αs, β, a} ∀(s, i). In

the next section, I show how I calibrate or estimate these parameters to simulate the model.

6 Quantitative Estimation Approach

This section describes how to take the dynamic model described above to the data. First, I explain
how I calibrate auxiliary parameters based on the literature. Second, I describe the approach to
estimating the main structural parameters of interest . Last, I describe how I clean and construct
the data with which to estimate the model.

6.1 Calibrated parameters

Where possible, I estimate the key parameters of the structural model. Before I proceed to explain
how those parameters are identified, this section describes the values chosen for the auxiliary
parameters that are calibrated ex ante. An overview of the values of all key structural parameters
is shown in Table 6.

Discount factor. As the discount factor β is difficult to identify in dynamic discrete choice
models (Manski, 1993; Rust et al., 1994) and I do not have credible instruments to separately iden-
tify variation in current and future values (Magnac and Thesmar, 2002; De Groote and Verboven,
2019), I follow the applied dynamic discrete choice literature (e.g. Traiberman (2019)) and set
the discount factor exogenously. In particular, I follow Kennan and Walker (2011), Dix-Carneiro

40



(2014), and Artuc et al. (2020) in setting β = 0.95 as the annual discount factor. However, none
of the main results are very sensitive to this choice.

Housing expenditure shares. I calibrate the nontradable expenditure shares αs of local
nontradables associated with housing costs based on existing results in the literature. I use the
estimates by Diamond (2016) and set αcol = 0.63 and αnc = 0.68 for college and non-college
workers.75 In one variation, I also assume common expenditure shares of 0.65. In order to impose
the model implication that the combined flow utility enters with a common elasticity into the
location choice equation, I combine the log wage utility growth and housing cost growth into a log
real wage growth term

∆ lnRw
ist = ∆ ln W̃ist − αs lnQit, (21)

using these calibrated expenditure shares.

6.2 Renewal actions

In estimating the location choice parameters θs, I have to address the fact that the conditional
value function in Equation 12 contains future location value terms E[V is

t+1]. The intuition for the
presence of these terms is that workers might move because a city will become expensive or high
wage or high in amenities etc. in the future. However, with finite data, we face the issue that we
do not fully observe future value functions V is

t+1.

In order to identify the parameters θs without observing all state variables, I therefore follow an
approach based on Scott (2013) that has recently found application in research on urban location
choices (Diamond et al., 2017; Almagro and Domı́nguez-Iino, 2020). It is based on using future
realized values of observables as a proxy for agents’ expectations that influence current decisions.
It also assumes finite dependence in actions by modelling location choices as “renewal actions”
where the same choices leave agents in the same state with regard to future value functions, which
will allow us to difference out future value terms.

Renewal action illustration. The intuition for a one-period ahead renewal action in a
migration setting is illustrated in Figure 12. Workers 1 and 2 both start out in city i at the
beginning of period t, but Worker 2 chooses to move to city k in period t, while Worker 1 remains
in place and only moves to city k in period t + 1. Migration in period t + 1 to city k leaves
Worker 1 in the same state as Worker 2, who moved earlier. The renewal action assumption is
that, going forward, both workers have the same expected value of t + 2 actions and outcomes,
given by E[V ks

t+2]. However, their utility in period t may vary along the different paths taken,
as they experience wages and rents in different cities during period t, and pay moving costs at
different times. Therefore, the differences in city characteristics at time t, together with the choice
probabilities for the different paths, can be used to estimate the sensitivity of migration choices to
city observables.

To derive an estimating equation based on this renewal state approach, assume that two house-
holds of type s, both in location i at the beginning of period t, make some location choices k and
l. We can take the difference between the logs of the conditional probabilities of these choices to

75The same calibration choice is made in a recent paper by Fajgelbaum and Gaubert (2020). These expenditure
shares are also very close to the share of consumption expenditures with prices that are affected by house prices
computed in Moretti (2013).
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obtain

θs ln

(
µikst
µilst

)
= (υkst − υlst )− (τ iks − τ ils )

= (Ukst − Ulst) + β
(
E[V ks

t+1]− E[V ls
t+1]
)
− (τ iks − τ ils )

= (Ukst − Ulst) + +β
(
V ks
t+1 − V ls

t+1

)
− (τ iks − τ ils ) + (ξkst − ξlst ) (22)

where ξkst = β(E[V ks
t+1]− V ks

t+1). That is

Expectational error assumption. In the last line of Equation 22, I replaced the expectation
operator with the realized value of the future value function, and an expectation error ξkst . That is, I
assumed that realized values of future payoffs are noisy measures of workers’ expectations, following
Scott (2013) and Kalouptsidi et al. (2020).76 Note that I do not necessarily require workers to
have rational expectations with regard to future value functions. Instead, the expectation error
can reflect biased beliefs but needs to be mean-independent of the instruments for the components
of flow utility discussed later. An alternative method of ensuring this mean independence is
demonstrated by Diamond et al. (2017) in an urban location choice setting: they exploit a quasi-
random assignment of renters into control and treatment groups to difference out any bias in future
expectations. In contrast, I will rely on the exclusion restrictions of my instruments to identify
changes in city characteristics that are likely to be uncorrelated with the expectation error, as I
discuss in the identification section below.

Applying renewal actions. We can now use the renewal action assumption to difference
out the future value functions – following the intuition discussed in the example shown in Figure
12. In the aggregate, this corresponds to comparing the probabilities that workers choose different
migration paths that end up in the same location. Relating these differences in choice probabilities
to differences in the characteristics of the cities lived in along the way, allows us to identify the
location choice parameters.

Assume that in period t + 1 two workers end up in the same location k = l, which one
worker already moved to in period t, and that the other worker spent period t staying in city
i.77 Substituting for the ex ante value functions from Equation (15), the difference in choice
probabilities then simplifies to

θs ln

(
µikst
µiist

)
=(Ukst − Ulst)− (τ iks − τ iis )− β(τ kks − τ iks )− θsβ ln

(
µkks,t+1

µiks,t+1

)
+ ξkist (23)

where ξkist = ξkst − ξist . This expression no longer depends on the future value terms which have
been differenced out by the renewal state assumption. Kalouptsidi et al. (2020) note that this
expression can be viewed intuitively as an intertemporal Euler equation for the optimal choice of
moving probabilities. There is a clear analogy to an indifference condition, where a representative
agent is trading off the probability of reaching the renewal state along different paths.

This equation now describes the current and next period moving choices as a function of
differences in flow utility, moving costs, and expectation errors. Below, I discuss how this expression
can be used to identify the location choice parameters of interest.

76While this assumption is restrictive, it is common in applications (e.g De Groote and Verboven (2019)) because
the alternative involves having to specify arbitrary assumptions about how agents expect future states to evolve.

77The identification does not rely on this assumption: all that matters is that the workers end up in the same
location. However, assuming that one of the workers can stay in place simplifies the estimating equation.
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6.3 Identification of location choice parameters

To derive estimation moments for the location choice elasticity, I need to rewrite the location choice
Euler Equation (23) in terms of observable variables and model parameters. I assume that moving
costs are zero for households that are not moving across cities, i.e. τ iis = τ kks = 0. Rearranging the
location choice Euler Equation (23), and substituting the flow utility components, I obtain

ln

(
µikst
µiist

)
+ β ln

(
µkks,t+1

µiks,t+1

)
︸ ︷︷ ︸

Mik
st : Adjusted relative

migration prob.

=θ−1
s ln

(
Rw
kst

Rw
ist

)
− θ−1

s (1− β)τ iks + ξ̃kist (24)

where ξ̃kist = θ−1
s ln

(
Akst
Aist

)
+ θ−1

s ξkist and Rw
kst is the real wage. Here, I have gathered the unob-

servable amenity differences and expectation errors into the error term.

Note that we can use this equation to illustrate how the dynamic approach compares to a static
location choice model. For example, if an economic recovery is expected to raise future wages in
some city i, but this increase takes place over multiple years, this might bias static estimates of
location choice parameters. A static model might infer that location choice is very sensitive to wage
changes if many workers move into i during the period when the initial wage changes are still small.
However, the dynamic model takes into account that the future value of city i has also gone up as
future wage increases are anticipated. This is reflected in the expression above by accounting for
increased migration flows into city i in the future, after wages have risen. The dependent variable
in the dynamic model would reflect that both increases in current wages and in the future value of
being in city i can be causing current migration flows – and that the true sensitivity of migration
to observable wages is therefore not as large as the static parameter estimates would suggest.

Addressing unobservable amenities. An important identification concern is that the dif-

ference in amenities ln
(
Akst
Aist

)
in the error term likely affects the long-run differences in the levels

of wages and house prices. This would be the case in the model presented above, as well as in
most standard Rosen-Roback style spatial equilibrium models.78 As I do not observe amenity dif-
ferences, this would cause omitted variable bias in a simple OLS regression estimation of Equation
24.

I address this issue in three ways: First, I eliminate the constant components of amenities –
and the constant moving costs – by first-differencing the estimating equation. This means that
identification of the coefficients on wages and house prices only requires that changes in amenities
year-to-year are not correlated with contemporaneous year-to-year changes in real wages. While
there is a substantial literature finding endogenous responses in city amenities to demographic
changes,79 many amenities, such as natural advantages, climate, and cultural factors are likely to
change relatively slowly – and therefore will be differenced out by this transformation.

Second, I model endogenous amenity changes as a function of local observable characteristics. I
follow an approach similar to that in Diamond (2016) and model the log of amenities as a function of
the local college share of the population. Moreover, in a robustness check, I will additionally model
amenities as a function of an index Amen1st

it that captures the local prevalence of consumption and
leisure establishments (see Appendix Section F.4 for details.).80 That is, in the full specification,

78See, e.g. Shapiro (2006); Moretti (2011); Diamond (2016)
79For a review, see Rosenthal and Ross (2015).
80I assume that establishments respond with a lag to contemporaneous demographic changes, such that these
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I model the unobserved amenity change as

∆ lnAist = βcols ∆ColShareit + βests ∆Amen1st
it + ε∆Aist ., (25)

where βests = 0 in the main specification. This means that the baseline estimating equation becomes

∆Mik
st = θ−1

s ∆ ln

(
Rw
kst

Rw
ist

)
+ θ−1

s βs(∆ColSharekt −∆ColShareit) + ∆ξ̃kis,Colt . (26)

where ∆ξ̃kis,Colt = θ−1
s

(
ε∆Akst − ε∆Aist

)
+ θ−1

s ∆ξkist . Now, the residual ∆ξ̃kis,Colt only contains changes
in the difference in amenities between cities that are not captured by the change in college shares,
as well as changes in expectation errors.

Third, I use instruments to identify variation in wages and housing costs that is plausibly
exogenous with regard to the changes in amenities and expectation errors contained in the error
term. While canonical applications of this dynamic mobility estimation approach in the trade
literature to occupational switching (Artuç et al., 2010) and migration (Caliendo et al., 2019) have
used past values of migration shares and wages to instrument for their future values, this would
not be an appropriate identification strategy in this case. Differences in wages, migration, and
house prices, both past and present, are all likely to be correlated with the difference in amenities
and expectational errors contained in the error term. While taking first differences and controlling
for endogenous amenity changes associated with changes in skill composition, as described above,
should address some of the concern over bias from unobservable amenities changes, it is still
possible that “speculative” changes in expectations for local house prices and/or wages affect both
migration and future realized values of these variables. This makes lagged values of the endogenous
variables unsuitable as instruments in this setting.

Shift-share instruments. Ideally, I would be able to use an approach like the one used
by Diamond et al. (2017) and Diamond et al. (2019) who exploit a quasi-natural experiment in
San Francisco of differences in rent control assignment that allows them to compare treatment
and control groups and thereby difference out local amenity effects. However, to my knowledge,
no comparable institutional variation at the national level is available for the time period under
consideration.

Instead, I identify exogenous variation in wages and house prices that is plausibly uncorrelated
with idiosyncratic local expectation errors and residual amenity changes by again using an industry
shift-share approach: Contemporaneous labor demand shocks driven by national trends are plau-
sibly uncorrelated with local contemporaneous amenity changes and errors in workers’ expectation
of the future value function.

Here, I construct the shift-share instruments for the structural model by summing over national
wage trends by industry, using year 2000 employment shares. In addition to the shift-share instru-
ments for overall changes in city wages, the model with heterogeneous skill groups additionally
suggests that we can construct skill-specific shift-shares of the form

Bs
it,‘00 =

∑
ι

πιsi,2000∆ lnWUS
ι,−i,t,

for each of the college and non-college skill groups. The only difference in construction to the shift-
share instrument for the city as a whole is that the weights on the national industry trends are now

observable changes in amenities are not correlated with other contemporaneous shocks to location preferences.
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given by the exposure of group s to those trends, which is proxied by the share πιsi,2000 of workers
in group s who work in 2-digit industry ι in the year 2000 in city i. As before, I follow the literature
in interacting these wage shocks with exogenous land constraints to identify variation in housing
costs. See Appendix Section F.2 for more details on the shift-share instrument construction and
identifying variation. Moreover, I construct the city-level shift shares at both a 2-digit and 3-digit
industry level in order to exploit additional variation in industry wage trends within industry
sectors. See Appendix Section E.4 for details on the exact instruments and moments used in this
estimation – and in estimating the other structural parameters

The last issue is the measurement of the housing cost changes ∆ lnQit to be used in the
estimation. As I do not have precise annual data on local rent payments that cover all U.S.
commuting zones, I again rely on the mapping between changes in housing costs and house price
growth through the valuation function. In the construction of real wages, I substitute ∆ lnQit =
∆ lnPit with available house price growth data and include year fixed effects in the estimation to
absorb any common national changes in the valuation term αt over time. Moreover, the fact that
the location choice parameters are estimated in differences means that constant differences αi in
housing valuation across cities do not affect the estimation.

6.4 Identification of housing supply elasticities

In order to estimate the parameters of the housing supply function, I first take logs of the house
price function

lnPit = ln φ̃i + ln φ̃it + φ̃Hi lnHDit,

where HDit = (
∑

ι

∑
s αsWιi,tLis,ι,t) is total housing expenditure. Then, I parameterize the elas-

ticity with regard to changes in housing demand as a function of the unavailable share of land in
the city:

φ̃Hi = ψH + ψlHx
land
i

Moreover, I assume that the time-varying local housing productivity and housing valuation term
ln φ̃it can be modeled as

ln φ̃it = ηr ln rmtgt + ηe ln eit + ηHi · t+ εPit ,

where rmtgt are nominal mortgage rates, eit is the expected inflation rate, ηHi · t is a city-specific
linear housing valuation trend, and εPit is a local house price residual.

I substitute this expression into the housing supply equation and take first differences to elimi-
nate the constant component ln φ̃i of house price differences between cities. The estimating equa-
tion therefore becomes

∆ lnPit = ηr∆ ln rmtgt + ηe∆ ln eit + ηHi + (ψH + ψlHx
land
i )∆ lnHDit + ∆εPit . (27)

Again, we should be concerned that ∆εPit is correlated with housing demand. For instance, in
periods when house prices are unusually high, housing demand and local population are likely
to be lower as fewer workers choose to move to the more expensive city. Therefore, we need
instruments for housing demand that are uncorrelated with idiosyncratic local house price shocks.

Housing demand instruments. Based on the wage and population components of housing
demand, we can again use Bartik wage shift-shares as instruments to identify exogenous variation
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in housing demand. The identifying assumption to obtain consistent estimates of ψH and ψlH in
this case is that unobservable shocks to house prices are not correlated with economic shocks based
on national trends to the city, other than through the effect of the latter on housing demand and
in-migration.81

6.5 Identification of labor demand parameters

In order to identify how wages respond to changes in employment size – the degree to which
diminishing marginal returns are balanced by agglomeration effects – I need to estimate ηLD in
the labor demand equation

∆ lnWiιt = ηLD∆ lnLiιt +
1

σ
∆ ln D̃iιt,

I assume that the local demand and productivity term 1
σ
∆ ln D̃iιt can be decomposed into a national

industry trend component dιt, a local city trend component dit, and a residual local industry
component dιit, in the form

1

σ
∆ ln D̃isιt = dιt + dit + dιit.

If we estimate the resulting labor demand equation, including industry×year and CZ×year fixed
effects, given by

∆ lnWiιt = ηLD∆ lnLiιt + dιt + di + dιit,

we can recover the labor demand parameter ηLD under the assumption Cov(∆ lnLiιtdιit) = 0 using
fixed effects OLS. Of course, it is possible that this assumption does not hold exactly. Lacking an
adequate instrument for local industry employment, I will therefore pay close attention to how the
estimate changes as control variables are added to see if unobservable variation might play a large
role in determining the coefficient estimate.

6.6 Identification of industry choice elasticity

The elasticity of workers’ industry choice πisιt with regard to changes in wage differentials between
industries is captured by the elasticity parameter a. I can derive an estimating equation for this
parameter by taking log differences of Equation 9 to obtain

∆ lnπisιt = αist + αsιi + a∆ lnWiιt + uisιt, (28)

where αist = ∆ ln
(∑Nind

ι=1 W a
iιtεsιi

)
, and a uisιt is a stochastic error term that captures any mis-

measurement of wages. This means I can estimate a as the coefficient from a regression of changes
in the local industry employment shares for each education group s on local log industry wage
changes, controlling for a group-specific city trend αist.

Moreover, in the empirical implementation I also condition on CZ-by-industry fixed effects αsιi
to control for long-run local industry trends that might be invalidating the exclusion restriction,
e.g. the technology industry in San Francisco experiencing faster employment growth over the
sample period in general in a way that is unrelated to wage incentives.

81See Appendix Section E.4 for details on the exact instruments and moments used in this estimation.
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From the model, national changes in industry demand represent shocks to labor demand that
are plausibly exogenous with regard to local labor supply decisions. Therefore, I can use the
national leave-one-out wage growth ∆ lnWUS

ι,−i,t. in industry ι as an instrument for local industry
wage growth being higher relative to the city i average. The elasticity a is therefore only identified
off within-city differences in a given year in the degree to which local industries outperform their
usual local industry wages as a result of national trends.82

6.7 Additional Data for the Structural Estimation

In addition to the data used in the reduced-form estimation that are described in Section 3.6,
the structural parameter estimations require additional data inputs and transformations that are
described below.

Combining low-population geographic units. As the pairwise migration data by edu-
cation group that are used in the location choice regressions suffer from very small sample sizes
if there are few data points per commuting zone, I improve the reliability of the estimates by
combining 1990 commuting zones that have less than 50,000 residents with adjacent CZs until
the combined area contains at least 50,000 residents (see Appendix Section F.5 for details). For
consistency, all the structural parameters are estimated using these “Adjusted CZ” geographic
units, and these are also the units used in simulating the counterfactuals.

Migration probabilities by education group. The quantitative estimation allows for
different worker types to have skill group-specific moving probabilities and preferences. I proxy for
skill using education and distinguish a “high” education group of workers with at least a 4-year
college degree or equivalent, and a “low” education group of non-college workers.

Given enough data, we could simply calculate the empirical choice probabilities for each state
of interest where the state space consists of worker types, origins, destinations, and years. Unfor-
tunately, the IRS data used in the reduced form estimation does not allow for distinguishing flows
of different groups of workers. The best publicly available migration data at an annual frequency
for the U.S. that also contains migrant characteristics, is from the American Community Survey
(ACS) for 2005-2017, with sample sizes only in the single-digit millions for most years.

To improve the precision of migration flow estimates by education group from this ACS micro-
data, I therefore apply statistical techniques for data smoothing and imputation that allow me to
make use of additional information contained in the ACS data, combine information across units
and years, and incorporate information from the IRS migration data. For example, I use the fact
that migration by education needs to fulfill adding-up constraints and is persistent over time to
impute the education share of flows using a LASSO estimator on information from other parts of
the ACS data. Then, I apply an empirical Bayes shrinkage estimator (Morris, 1983; DuMouchel
and Harris, 1983; Gelman et al., 2013) to combine these predicted education shares with the raw
observed values. Intuitively, this adjusts the raw non-college shares by moving them towards their
expected value - “shrinking” the deviation - and does so to a greater degree if the raw estimate
was based on a smaller sample size. Details on the full methodology can be found in Appendix
E.1.

As a result of this smoothing approach, I am able to avoid location pairs dropping out of the
data entirely if their flows become too small to be recorded in the sample. This captures the fact
that true migration probabilities are unlikely to be precisely zero. Other recent contributions to the

82See Appendix Section E.4 for details on the exact instruments and moments used in this estimation.
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spatial economics literature have taken similar approaches: Almagro and Domı́nguez-Iino (2020)
also use Bayesian smoothing with data-driven priors to obtain conditional choice probabilities from
noisy data.83

Wage growth by education. Moving choices also depend on Wist, the location-specific wage
for workers with and without a college education. In order to estimate group- and location-specific
wage changes, I use data from the Quarterly Census of Employment and Wages (QCEW) on
industry-specific wages. I combine this data with estimates of the CZ-level education share in each
industry from year 2000 Census microdata (obtained from IPUMS), to predict a constant local
education group-specific exposure to each industry. These exposure shares are then multiplied by
the average local wage growth in each industry to construct the growth in education-specific wage
indices in each CZ.

7 Structural estimation results

This section details the estimation results for the parameters that are estimated from the struc-
tural equations of the dynamic model. An overview of all the estimated parameters used in the
counterfactual simulations is shown in Table 6.

7.1 Location choice parameter θ−1
s estimates

This section discusses the structural estimates of the location choice elasticity parameter θ−1
s . The

baseline estimates consist of estimates of the location choice Equation 26 using OLS and IV, which
are shown in Table 7. The sample for this estimation covers the years 2005-2017, as that is the
period for which migration data by education group is available.

Overall, in the IV estimates I find a marginally greater sensitivity to location characteristics for
non-college-educated workers with regard to real wages. The location choice parameter estimates
are θ̂col = 1.61 and θ̂nc = 2.49. Both estimates are statistically significant, but only marginally for
the college workers and highly significant for the non-college workers. To ensure that this is not an
artifice of how I compute standard errors, each coefficient is reported with two different standard
error estimates: the first one corresponds to clustering standard errors at the origin and at the
destination CZ level. The second one estimates Driscoll and Kraay (1998) standard errors, which
flexibly allow for nonparametrically estimated spatial covariance, and temporal dependence (with
a bandwidth of 5 years). The statistical significance of the coefficients is the same under either of
these standard error estimates.

Moreover, for both groups the IV coefficients are much larger than the OLS estimates, which
suggests that there is downward bias in the magnitude of the OLS coefficients. This could arise,
for instance, if an increase in amenities in a city, which is not accounted for by the college share
changes, both leads workers to move to certain locations and also lowers the required money wage
for doing so.

These estimates of migration elasticities with regard to real wages are comparable in magnitude
to those found by Diamond (2016), as well as the ratio of of the employment and earnings effects of

83More generally, Dingel and Tintelnot (2020) show that modeling “granular” spatial choice data smoothly as
coming from a multinomial count model can lead to better predictive properties than calibrating perfectly to the raw
observations. They argue that the reason is that estimates using raw observations end up overfitting to idiosyncratic
shock realizations.
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a TFP shock found in Hornbeck and Moretti (2019).84 However, these papers are not necessarily
directly comparable as I am estimating a dynamic model with bilateral migration costs on annual
data, whereas Diamond (2016) is estimating a static model at decadal frequencies without bilateral
migration costs. The estimates that are most closely comparable are perhaps the labor supply
elasticity estimates of Artuc et al. (2020), who estimate a dynamic location choice model with
annual data in Brazil, and obtain a similar estimate of 1.962 for their equivalent of θ−1, without
distinguishing education groups.

Robustness checks for the location choice parameter estimates. In order to see how
sensitive these estimates are to variations in the specification, I report a number of additional
results, with IV coefficient estimates shown in Table 8 (and OLS estimates in Appendix Table
A4).

The importance of trying to capture endogenous amenities by including the change in differences
in college shares is explored in Columns 1 and 5 of Table 8 for college and non-college workers:
when I omit the college share changes as a proxy for amenity changes, the estimated real wage
elasticities are less than 25% smaller for both groups – and the change is not statistically significant.
Columns 2 and 6 test an additional way of capturing variation in amenities, controlling for an
amenity index,85 but this variation does not affect the size of the real wage elasticity estimates
much.

In Columns 3 and 7, I consider a specification that uses the average salary income per capita
in the commuting zone, based on IRS salary data, rather than distinguishing wages by education
group.86 The effect of this change is that the wage coefficients decline in magnitude by about 60%
for college workers and 35% for non-college workers, and only the non-college parameter estimate
remains statistically significant. This drop in estimated effect size is intuitive as the common
income measure is a noisier measure of the relevant group-specific city characteristics.

In Columns 4 and 8 of Table 8 I estimate a static version of the location choice equation
that only includes contemporaneous migration choices in the dependent variable. That is, the

dependent variable is ln
(
µikst
µiist

)
and is not adjusted for changes in future migration probabilities.

The static IV estimate of location choice elasticity θ−1
s is smaller and statistically not significant

for either group. This suggests that, on average, changes in the option value of different locations
are offsetting contemporaneous differences in wages.87 These effects from changes in future values
are controlled for in the dynamic model estimates in Table 7 by explicitly including changes in
future migration in the dependent variable.88

84See Table 4, column 8, Panels A and B: the ratio of the employment to earnings effects is 3.35
1.54 = 2.18, which is

squarely in between my estimates for the different education groups.
85See Appendix Section F.4 for details on the construction of this index.
86I also assume a common housing expenditure share of 65% in constructing real wages, such that the real income

growth variable in this specification is the same across education groups.
87This would be the case, for instance, if some cities usually lead in wage changes that then propagate to

other locations: when the leading city sees its wages increase, but migration flows from laggards do not increase
correspondingly, this would appear in a static model as if workers are unresponsive to wage changes. However,
workers in this example anticipate that the same wage increase will come to their laggard locations in the future,
so the value of staying in place also increases, which lowers the probability of moving.

88An analogous result has been found for occupational mobility by Traiberman (2019), who shows that when
future human capital accumulation is ignored, i.e. the estimation is static, the estimated elasticity of occupation
choices with regard to observable wage differences is substantially smaller. The rationale given is similar to the
intuition for choices between cities that I discussed above: wage differences between occupations appear larger than
they really are when we do not account for the similarity in future values.
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7.2 Housing supply parameter φ̃Hi estimates

In this section, I discuss the house price elasticity parameters obtained from estimating the inverse
housing supply function in Equation 27 over the 2000-2017 period.89 The IV estimates are shown
in Table 9, with the corresponding OLS results in Appendix Table A5. As shown in Columns
1 and 2 of Table 9, the average IV effect of housing demand changes on house prices is positive
and significant without allowing for heterogeneity among cities, even when I control for CZ fixed
effects.

In Columns 3 and 4, I allow for heterogeneity in the inverse supply elasticities by interacting
the changes in log housing expenditures with the local share of land unavailable for construction.
The interaction terms are positive and significant, suggesting that greater supply constraints result
in a greater effect on house prices of changes in housing demand. This finding complements similar
results in the literature for the effect of population changes mediated by geographic constraints
(e.g. Saiz (2010); Diamond (2016)). To interpret the magnitudes, note that land constraints are
scaled to lie between zero and one.

In Column 5, I additionally control for the local consumption amenity index as this might
capture changes in the quality of housing. While the amenity index has a significant positive effect
on house price growth, the housing expenditure coefficients are unchanged in size and significance.

The distribution of the implied inverse housing supply elasticities is shown below Table 9. The
implied mean elasticity across cities of house prices with regard to housing expenditures is 1.65
in Column 5 and ranges from 1.02 to 3.12 across cities. The elasticities that are estimated for
each Adjusted CZ based on the coefficients in Column 5 are the inputs used in the counterfactual
analysis.

These inverse supply elasticity estimates are towards the upper end of the range of long-run
inverse housing supply elasticities found in the seminal studies by Saiz (2010) and Diamond (2016).
However, their analyses are not directly comparable as (1) I estimate short-run inverse housing
supply elasticities from annual data where they use decadal intervals; (2) My sample includes the
large increase in house price volatility during the boom-bust period of the late 2000s and early
2010s, and (3) I estimate the elasticity with regard to housing expenditure, not population.

We would expect the supply elasticity of housing to be lower (and the inverse elasticity therefore
to be higher) in the short run than in the long run. As a result, estimates comparing house prices
at decadal frequencies might not capture a large share of the short-run effect of population changes
on house prices.

As regards the difference in sample period, greater price responsiveness in the last two decades
could be the consequence of, for example, financial innovation that enabled borrowing by home
buyers (Pavlov and Wachter, 2009), or an increase in credit supply (Mian and Sufi, 2009). At
the same time, there is some evidence that regulatory constraints on housing supply have become
more restrictive in recent years (Ganong and Shoag, 2017; Gyourko et al., 2019), which would also
increase the slope of the supply curve. In fact, my inverse supply elasticity estimates are towards
the lower end of those implied by the sluggish short-run supply responses found by Gorback and
Keys (2020) for U.S. cities over the last decade.

89This period is shorter than the 1990-2017 time period used for the reduced-form estimation, as I only compute
counterfactuals using post-2000 data and am aligning the parameter estimates with that period.
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7.3 Labor demand parameter ηLD estimates

The OLS fixed effects estimates of the labor demand scale parameter are shown in Table 10. The
first column shows the estimate without any control variables, and Columns 2 and 3 add controls
for industry-year and city-year fixed effects. The estimated coefficients are remarkably stable across
these specifications, representing an agglomeration elasticity of wages to local industry employment
of 5.7%.

While this identification does not ensure a causal estimate, my coefficient turns out to be right
in the middle of the range of benchmark estimates of agglomeration effects surveyed by Combes
and Gobillon (2015), who note that typical values fall in the range between 0.04 and 0.07 (p. 299).
The same survey paper also notes that correcting for endogeneity through instruments usually has
little effect on the magnitude of agglomeration effect estimates.

7.4 Industry choice parameter a estimates

The sample for the estimation of Equation 28 consists of all NAICS 2-digit industries in continental
U.S. Adjusted CZs over the 2000-2017 period, which is the period that most closely corresponds
to the period for which I will simulate counterfactuals. In line with the timing assumptions of the
mode, the industry choice shares πisιt for period t are computed from period t + 1 employment
shares – however, this timing assumption does not substantially affect the results.

Table 11 shows the IV estimates of a. As the education-specific employment in each industry
is imputed using constant education shares by industry,90 the changes in industry employment
shares by education group are mostly driven by total employment changes – and the estimates are
therefore very similar between the two education groups. Once city trends are controlled for, I find
statistically significant positive effects of higher wages on employment shares. That is, workers
move into industries that pay more.

The estimated wage elasticity of industry choice â in the full specification averages 0.325 across
both education groups (Columns 3 and 6, weighted by their population share) – and this is the
common value that I will use in the counterfactual simulations.

Comparison to the literature. There does not seem to be a consensus in the literature
on the value of the elasticity of industry choices with regard to wages in the setting which I am
considering, which includes no switching costs but allows for a local group-specific industry match
quality.

In a UK setting, Pessoa (2016) estimates an elasticity of sector employment to the value of
switching into the sector of 0.027. In contrast, in a Spanish setting with switching costs, Fuchs
et al. (2018) estimates an elasticity of sector choice of 1.35. Dix-Carneiro (2014) estimates a
sector choice idiosyncratic shock heterogeneity scale parameter of 2.15 in Brazil, and Ashournia
(2018) finds 2.3 in Denmark, which would correspond to a wage elasticity of 0.4-0.5 in my setting.
Caliendo et al. (2019) find an elasticity of switching state and sector in the U.S. of slightly less
than 0.5 at an annual frequency. Based on this wide range of values, my wage elasticity estimate
â = 0.325 (corresponding to an idiosyncratic shock scale of 3.1) seems compatible with the other
findings in the literature.

90See Appendix Section F.2 for details on the construction of employment by education group.
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8 Counterfactuals

In this section, I use the parameter estimates from the previous section and simulate the quanti-
tative model to explore the role played by mobility and supply constraints in cross-sectional U.S.
house price dynamics in the aggregate. I show that increases in migration costs (i.e. declines in
mobility) lead to a more dispersed distribution of house price growth across cities after an economic
shock. Moreover, when mobility is lower, policies that reduce housing supply constraints have a
greater impact on the distribution of house price growth in response to a shock.

This section proceeds as follows: First, I adapt the “dynamic hat algebra” approach of Caliendo
et al. (2019) to my setting with heterogeneous workers, to be able to simulate counterfactual time
series.91 I show that the key equations of my model can be rewritten in changes over time, which
implies that knowing the changes in amenity and productivity fundamentals is sufficient to solve
for population and house price changes starting from observable values in a baseline period – that
is, I require no knowledge of the levels of unobserved fundamentals.

Next, I address the issue that, in models with migration costs, due to the adjustment frictions,
observed outcomes do not necessarily represent steady states. To compare paths of the economy
under different counterfactual scenarios, I therefore first need to infer the path to a steady state
equilibrium that would be consistent with the observables under the baseline scenario. I adapt
the solution method of Ahlfeldt et al. (2020) to show that it is possible to infer stationary steady
states consistent with the distribution of fundamentals at a particular point in time by simulating
the path of this economy under the assumption of a convergent path of unobservable fundamentals
until the population allocations asymptote.

After that, I discuss how I resolve a practical limitation of U.S. migration data: Migration flows
by education group are only available from the American Community Survey for the years after
2005. However, to study the housing boom of the early 2000s, I need to set the starting point for
counterfactual simulations at an earlier year. I show how to overcome this data limitation by using
observable outcomes and migration aggregates to infer education-group-specific migration flows in
the years before 2005 that are consistent with the aggregate outcomes observed. This method can
yield imputed migration flow matrices by education group for the pre-2005 years, which I then use
as the input for counterfactual scenarios starting in the year 2000.

Last, I use this counterfactual steady state equilibrium method to compare simulated transition
paths for house price growth in response to industry wage shocks and changes in fundamentals. In
particular, I explore the role that migration costs, housing supply constraints, and their interaction,
play in compressing or widening the distribution of house price growth across cities.

8.1 Rewriting the dynamic model in changes

This section shows how to rewrite the dynamic model in changes, such that it can then be simulated
based on series of growth rates without having to know the levels of unobservable fundamentals.
This derivation builds on the method used in Caliendo et al. (2019), which I adapt to the case of
heterogeneous migrant groups. The full details of the derivation can be found in Appendix Section
G.1.

First, by taking the ratio of migration probabilities from equation 14 between two time periods

91The approach of Caliendo et al. (2019) builds on Dekle et al. (2008) who show in a static model that the
observed allocations are sufficient statistics for unobservable fundamentals.
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I can write

µiks,t+1 =
µikst(U̇kst+1)

1
θs∑N

j µ
ij
st(U̇

js
t+1)

1
θs

(29)

which uses the notation U ist = exp(υist ), and ẋt+1 = xt+1

xt
.

Similarly, by differencing the conditional value function from Equation 12 and substituting for
the option value and flow utility, I can write the change in the value function as

U̇ ist+1 = Ȧis,t+1
˙̃
W is,t+1(Q̇i,t+1)−αs

(
N∑
k

µiks,t+1(U̇kst+2)
1
θs

)βθs

(30)

Here, I have also assumed rational expectations on the part of the migrants to drop the expectation
operators for future value terms. Rewriting the changes in wages, house prices, industry employ-
ment, and local populations in similar ways, I obtain a system of equations that can be solved
forward, starting from a particular period’s values. The assumption necessary to do so is that the
changes in unobserved fundamentals along the simulation path are known. That is, I assume that
the capitalization of rents into house prices is stable and that we are given a convergent series of
changes in amenities and productivity which eventually asymptotes to zero growth in these values
in the long run steady state. Under these conditions, I solve for steady state transition paths under
different assumptions about fundamentals.

8.2 Stationary spatial equilibrium with forward-looking location choices

This section builds on Ahlfeldt et al. (2020) and shows how to infer stationary spatial equilibria
in forward-looking spatial equilibrium models.

Equilibrium definition. I define a stationary spatial equilibrium in this setting as occurring
at time T , if for all t > T population sizes for each education group in each location are stable
over time. That is, it requires

L̇is,t+1 = 1 ∀ i, s, t > T.

This is equivalent to requiring that outflows and inflows of each population group are balanced
(Ahlfeldt et al., 2020). Note that this does not require that there are no migration flows. Due to
idiosyncratic location amenity shocks, there may still be gross migration between locations.

I define the “steady-state stationary equilibrium” (SSE) associated with a particular time period
t’s observed allocation of workers and prices to be the stationary equilibrium that is attained, if,
starting at t, all fundamentals (i.e. amenities, demand shocks, house price valuation function
changes) were held fixed at their period t values forever, while population, wages, and prices
converged to their long-run levels.

While this does not constitute formal proof, congestion forces are large based on my parameter
estimates above, with house price responses to housing demand being much stronger than wage
increases as a result of agglomeration. This makes it likely that there is a unique stationary
equilibrium that corresponds to each observed non-stationary allocation. The proof of this assertion
is left for a future iteration of this project.

Solving for the steady-state stationary equilibrium To find the stationary equilibrium
consistent with a particular time period’s observables, I use the dynamic hat equations derived in
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Section 8.1. In particular, the SSE for period t corresponds to the outcomes of a simulation of the
model in changes, where the fundamental paths have all been set to immediate convergence. That
is, it corresponds to solving the equations forward under the assumption that

{{Ȧis,t′+1,
˙̃Diι,t′+1}Ss=1}Ni=1 = 1 ∀t′ > t.

In addition, the dynamic forward-looking model requires us to impose an assumption that the
future utility ratio U̇kst+2 converges to one, i.e. no growth, at some future period.92

Under these assumptions, the economy settles into its SSE after a couple of years, starting
from its period t allocation. The exact algorithm that I use to solve for this SSE is detailed in
Appendix G.2. Given the focus of this paper, I will focus on differences in city-level house price
growth along different equilibrium paths as the main outcome of interest.

An important requirement to be able to compute the steady-state equilibria for a year’s economy
is that we have data on observables and migration flows by education group for the reference year.
In Section 8.3, I discuss how to impute the migration flows for reference years in past time periods
from time series of observables and aggregate migration flows.

8.3 Imputing migration flows by education group for historical time
periods

U.S. migration flows by education group are only available for the limited range of years 2005-2017
from the ACS. However, to compare the effect of different parameters on steady states around the
period of the housing boom of the early 2000s, I would like to set the starting point for counterfac-
tual simulations in the year 2000. I overcome this data limitation by using observable aggregate
outcomes (population, wages, and house prices), together with known migration aggregates from
the IRS, to solve for model-consistent education-group specific migration flows in 2000-2004. The
obtained migration flow matrices by education group for earlier years can then be set as the starting
point for comparative statics.

The exact algorithm that I use to impute past migration flows is detailed in Appendix G.3. In
short, the method requires an existing time series of utility growth from some time T1 forward, a
mobility matrix at time T1, and a full time series of within-period prices (wage and house price
growth) and aggregate population allocations. I obtain the forward-looking utility growth by
solving for the stationary steady state equilibrium consistent with 2005 observables, which yields
an expected path of utility during the transition to equilibrium. That is, implicitly I assume
that agents behave in the imputed pre-2005 periods as if the economy was going to settle into
equilibrium post-2005.

I can then infer historical education group-specific migration flow matrices in 2000 by running
the dynamic hat model backwards. In each backward step, I solve for the education group flows
that are consistent with the utility changes implied by 2000-2004 aggregate wages, population and
house price growth, and gross aggregate outmigration in each city. the resulting flow probabilities
for the year 2000 by education group are then treated as data in simulating counterfactuals that
start in that year.

92This assumption rules out scenarios akin to “rational bubbles” in location values, where accelerating future
growth expectations can justify continued movement towards particular cities without reaching a steady state even
in the face of strong congestion forces. In practice, I set convergence to occur 100 periods after the time period
of observation for which the steady state is computed - however, in practice the steady state values stabilize much
earlier than that.
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8.4 Model fit: overidentifying restrictions

The imputation of historical migration flows by education group in the year 2000 from 2005 data
is a good test of the model’s fit to the data. Therefore, in this section I use year 2000 moments
that were not targeted in the imputation as overidentifying restrictions for assessing the model.

Imputed college shares vs. actuals. To see how closely the flows by education group map
to actual outcomes, I first compute the college share by CZ in 2000 which is implied by reversing
the imputed migration flows for each education group for 2000-2005, starting with 2005 ACS
populations by education by CZ. Then, I compare this imputed college share to an estimate of the
actual college shares by CZ from the Year 2000 Census 5% IPUMS sample. Note that there are
several reasons why these two college share estimates might not be the same – even if I had access
to the true migration flow matrix by education: On the one hand, there may be sampling bias
and noise, as I am comparing an estimate from a Census sample (not the population) to an ACS
sample estimate, both of which are likely to be measured with some noise due to the limited sample
sizes. On the other hand, my model does not account for the extensive margin of the change in
college-educated population. That is, over this time period the share of college-educated workers
in the U.S. population is increasing, whereas my model assumes that a fixed college-educated
population moves between cities.93 Also note that I did not impose any information on population
by education group or bilateral flows on the imputation procedure during the 2000-2004 years to
which it is applied.

Nonetheless, the imputed model flows do a respectable job of predicting college shares by CZ:
The left panel of Figure 13 plots actual Census 2000 college shares by Adjusted CZ over college
shares implied by the model-based migration flow imputation. The model fits the data quite
closely: the relationship shown in the graph has a significant positive slope and a linear regression
R2 of 37%.

Imputed relative migration flows vs. actuals. More important for the geographic differ-
ences in outcomes is whether the model imputes the relative size of migration flows correctly. To
assess model fit in this dimension, I compare the total city-to-city migration flows, obtained by
aggregating the education-specific imputed flows, to the observed totals in the aggregate IRS mi-
gration data for the year 2000 – an implied outcome that was not a target in the imputation. The
right panel in Figure 13 compares the log of total outmigration shares in the IRS data to the value
obtained by summing across the model-imputed flow shares applied to imputed population totals
by education group for the year 2000. As the graph shows, there is a strong positive relationship,
with an R2 of 0.77 and a linear fit slope of 0.8.

Another measure of the ability of the model to predict relative flows is the correlation between
the imputed outflow share or the relative rank of each destination city from the perspective of an
origin city and the actual data on these relative importance measures. I compute these correlations
for each origin CZ and report the distribution of the CZ-level correlations in Table 12. The median
CZ’s correlation between actuals and the model imputed destination flow shares and ranking are
80% and 95%, respectively. In general, the model imputed flows have almost universally high
correlations with origin CZs’ actual flows to other cities, which is reassuring with regard to the
model’s ability to match the relative size of spillovers.

93I do account for general population growth by allocating IRS population counts without a migration origin
to cities, but in doing so I assume that these exogenous flows leave the college share of their destination cities
unchanged.
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8.5 Baseline wage shock construction

In this section, I construct national industry wage shocks for the boom periods 2000-2007 and
2012-2017 and evaluate their baseline effect on the distribution of house price changes across
cities. The effect of these shocks will later serve as my benchmark for evaluating how house price
dynamics change in the counterfactual scenarios. Throughout, I will be comparing model-predicted
transition paths towards stationary steady state equilibria.94

Wage shock construction. I estimate industry wage trends for different time periods for
each 2-digit NAICS industry and year, controlling for city-level differences in wages, by estimating
the following regression (weighting by employment) for 1990-2017:95

lnWi,ι,t = θi + θιt + εwiιt

To compute the “industry wage shocks” for the boom periods 2000-2007 and 2012-2017, I then
take the average of the estimated industry log wage changes ∆θιt over each period. This average
industry growth is then applied to each industry-by-city unit in the model for a number of years
that corresponds to the period in question (e.g. applying the average 2000-2007 inudstry wage
growth for 7 years starting in 2000 in the model).

To visually assess the spatial disparities in the initial impact of this wage shock, I compute the
approximate overall effects at the city level by weighting the industry shocks by the local industry
employment shares in the baseline years 2000 and 2012 (similar to a shift-share wage shock). The
predicted total nominal wage growth for each city over the two periods is illustrated in Figure 14.
The maps in Panels A and B show the relative size of the shocks for all Adjusted CZs in both
boom periods.

Importance of wage shocks. As a measure of how important these wage shocks are relative
to other city-level shocks occurring during the housing boom periods, I first compare the predicted
effect of wage shocks on city-level house price growth to actual house price growth during these
periods.96 Note that in the model, and in reality, many other shocks – credit supply changes,
amenity changes etc. – will be driving house price growth, so this analysis only serves to highlight
the importance of this particular channel relative to others.

Panels A and B of Figure 15 show that the national industry wage trends, when filtered through
the dynamic model, can explain 11-23% of the actual cross-sectional variation in house price growth
during the boom periods. A 1 ppt difference between cities in predicted house prices on average
corresponds to a 1.1-1.3 ppt difference in reality. Moreover, the levels of changes are predicted well
by nominal wage shocks, which are predicted to generate average house price growth of 48 ppt and
20 ppt in 2000-2007 and 2012-2017, compared to 45 ppt and 16 ppt in the actual data. Overall,
these numbers imply that industry wage shocks are a substantial factor in driving cross-sectional
house price dynamics during these periods.

94The answers would be very similar when looking only at long-run steady state comparisons.
95Note that this measure is not constructed as leave-one-out for each city for simplicity, but given the large

number of Adjusted CZs, the individual weight of each CZ in a particular 2-digit industry is very small.
96To be precise, I compute the difference in house price growth during the first T years of the transition towards

a stationary steady state equilibrium with and without the industry wage shocks. Then, I compare that to the
actual house price growth during the T year reference period for which the industry wage shocks were computed.
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8.6 Counterfactual Scenario 1: Mobility changes

In this analysis, I explore the role of migration spillovers in distributing unequal economic shocks
between cities by contemplating what happens to cross-sectional house price dynamics when mi-
gration costs change, making moves easier or harder.

Context: the secular decline in mobility. The effect of changes in migration costs has
acquired policy relevance more recently as a result of accumulating evidence that inter-state mi-
gration rates have been declining over the last three decades (Molloy et al., 2011; Molloy and
Smith, 2019). These changes in mobility affect the dynamism of the economy. For example, Dao
et al. (2017) show that the responsiveness of migration to local labor market conditions has been
weakening since the early 1990s. They show that this decline in migration elasticity is driven en-
tirely by declines in out-migration from areas with negative shocks, consistent with workers facing
a greater cost of leaving their current places of residence. The causes of these trends are not well
established: Molloy et al. (2017) show that changes in the demographic characteristics of the U.S.
population leave a significant share of the trend in mobility unexplained. They also argue that the
decline in geographic mobility is in part driven by a decline in the rate at which workers change
jobs. One possible explanation for this reluctance to switch jobs may be that workers face an
increasing risk of losing human capital as a result of career changes if they become unemployed
(Fujita, 2018).

Another explanation for declining geographic mobility is that the families of historical migrants
who moved to fast-growing cities in the American West and South have become more rooted as
successive generations grow up and call those areas their home (Coate and Mangum, 2019). Thus,
as a larger share of the U.S. population lives close to their birthplace and their families, those
local ties increase the cost of moving away (Zabek, 2019). In addition, young adults have been
increasingly likely to live with their parents, which reduces their likelihood of moving and can
explain a substantial share of the decline in inter-state mobility for that age group (Lei and South,
2020). At the same time, migration between states has become more costly as a result of increasing
regulatory and institutional barriers to transferring human capital: Johnson and Kleiner (2020)
show that state-specific occupational licenses reduce inter-state mobility of licensed workers by
36%. Furthermore, increasing differences in health care markets between states may have increased
the risk of losing benefits when moving across state lines (Schleicher, 2017). To the degree that
migration spillovers are an important adjustment mechanism in the U.S. economy, this decline in
mobility could affect the dynamics of the economy, including housing markets, which is what I
quantify in this section.

Mobility scenarios. For the purposes of this counterfactual, I will consider the effect of
exogenous changes in structural migration costs. To be precise, I will assume that the bilateral

migration cost component τ̃ iks = exp(−τ iks )
1
θs in the moving probability expression in Equation 14

can be decomposed into an element related to the personal cost of leaving the current city, a cost of
changing states, and a bilateral component containing any other bilateral moving costs (including
those shown in Table 2), as follows:

τ̃ iks = τ̃ ik,Leave
s · τ̃ ik,State

s · τ̃ ik,Other
s .

Then, I consider the following scenarios: (A) The cost of leaving the current city of residence falls
by a third (τ̃ ik,Leave

s increases by a factor of 1.5 if i 6= k). (B) Inter-state migration costs become
prohibitively large, i.e. τ̃ ik,State

s = 0 if i and k are in different states. (C) Migration costs to any
other city become prohibitively large (τ̃ ik,Leave

s = 0 if i 6= k). See Appendix Section G.4 for details
on the implementation of these changes in the dynamic hat model.
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Change in migration distances. The effect of these migration cost scenarios on the ability
of shocks to spill over across distances can be visualized by plotting the distribution of average
migration distances of inter-city flows. Appendix Figure A10 shows the distribution of empirical
baseline migration flow distances in log miles for college (Panel (a)) and non-college workers (Panel
(b)) in 2012, plotted in blue.

Scenario A (decrease in migration cost), which is not shown, would consist of shifting the
entire distribution up without changing its shape, as it distributes mass from zero distance moves
(not shown on the graphs) to positive distance moves. Scenario B (prohibitively high inter-state
migration costs), in contrast, (plotted in red) shifts the mass of long-distance flows on the right of
the blue baseline density to to the left, such that most moves become short-distance - indicated by
the large spike in the red distribution in the 10-50 mile range (log distances of 2.3-4). Moreover,
this change in migration costs has a greater impact on mobility for college workers because they
are more likely to migrate long distances in the empirical baseline. Scenario C (no mobility) would
concentrate all the probability mass at zero distance moves.

Comparing scenarios. To evaluate the cross-sectional house price dynamics under these
different migration cost scenarios, I simulate the house price growth over the 2000-2007 and 2012-
2017 periods on the economy’s path to its stationary steady state under each assumption on
migration costs. Then, I compare the simulated impact of the industry wage shocks on this
house price growth trajectory in each scenario, relative to each scenario’s baseline changes. This
comparison to scenario-specific baselines is important because the long-run steady state of the
economy changes with the migration cost fundamentals as well, and I want to distinguish the
responsiveness to shocks from this change in the steady state path.

House price growth differences. How do changes in migration costs affect the impact of
economic shocks on the cross-section of house prices? Intuitively, migration spillovers function as
an “escape valve” that allows local shocks to spread to connected locations, transferring some of
the impact from the origin to the destination city. If migration costs become sufficiently high,
mobility becomes less effective as mechanism for mitigating concentrated house price impacts,
because nearby cities are more likely to experience similar shocks. For instance, if displaced
workers from Los Angeles, CA, are no longer able to move to Las Vegas, NV, then when Los
Angeles house prices go up, migrants are limited to finding a home among nearby, and equally
expensive, California cities. In general, with less mobility the impact of economic shocks will be
concentrated on the housing markets in fewer cities, and differences in house price growth between
cities should increase as a result.

This dynamic is shown in Figure 16, with Panels (a) and (b) showing the distribution of the
effects of wage shocks on house price growth in each period under the different scenarios. As the
graphs show, decreases in migration costs result in a narrow unimodal distribution of house price
growth. In contrast, less mobility results in more dispersed house price growth, with a greater
mass of cities experiencing lower house price growth and a fatter right tail of very high house price
growth areas.

As a result, the distribution of house price effects becomes more unequal, which I confirm by
computing Gini coefficients for each scenario, which are shown in Table 13. I find that in each of
the time periods, lower mobility significantly increases the Gini coefficient of house price effects.

To further quantify the change in the distribution of outcomes, Table 13 shows the mean wage
shock effect on house price growth under each scenario, as well as the spread in outcomes from
the 75th to 25th, and from the 90th to the 10th percentile. While the average house price growth
barely changes in the different mobility scenarios, the interquartile and 90th-to-10th spreads are
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almost twice as large in the no mobility scenario, compared to the increased mobility scenario.
Comparing no mobility to the baseline scenario, the spread measures are 65-70% larger in the
former scenario.

Changes in house price betas. Another perspective on the impact of mobility comes from
considering what happens to the distribution of house price betas across cities as migration costs
change. Panels (c) and (d) of Figure 16 show the distribution of betas for the annual house price
growth effect in each period, computed by regressing each city’s annual house price growth effect
series (the difference of counterfactual to baseline scenario growth for each year) for the period in
question on the series of leave-one-out average city effects in each year.97 The differences between
the distributions shows that a lower migration cost (higher mobility) leads to a more narrow
distribution of city house price effect betas. In particular, the higher migration cost scenarios have
much more mass in the far left tail, indicating that in those scenarios there is a large group of
cities with house price growth that moves strongly inversely to the national average. Intuitively,
higher mobility leads to more elimination of such “arbitrage” opportunities in the cross-section of
cities, as workers are more likely to move to take advantage of cities becoming cheaper relative to
the national average.

8.7 Counterfactual Scenario 2: Housing supply constraints

As the next variation in fundamentals, I explore the importance of differences in housing supply
constraints in generating different house price growth impacts across cities. In particular, I focus
on the predicted effect on house price dynamics of reducing supply constraints in the cities where
housing supply is least elastic. This thought experiment is particularly salient because a number
of recent papers have argued that supply constraints have played an important role in limiting
economic adjustment processes in the U.S. (see, e.g. Ganong and Shoag (2017); Hsieh and Moretti
(2019)).

Changes in supply constraints. I focus on two scenarios that correspond to different degrees
of loosening supply constraints: reducing all house price elasticity with regard to demand changes
(i.e. reducing implied supply constraints) to be no higher than (1) the 75th percentile, or (2) the
median of the baseline distribution.

The effect of these scenarios on the geographic distribution of supply constraints is shown
in Panels (a) and (b) of Figure 17. Each map shows in darker colors the areas where supply
constraints, proxied by house price elasticities, are most reduced under the different scenarios.
Under the more modest reduction to the 75th percentile (left panel), the areas where supply
constraints are loosened most would be the Atlantic and Pacific coasts, as well as Florida and
areas near the Appalachian Mountains. When reducing price responses all the way to the median
(right panel), parts of the Far West, New England, and the Gulf Coast shore are additionally
affected.

House price growth differences. These reductions in supply constraints by themselves will
reduce the steady-state average level of house prices because the growing areas of the U.S. are
empirically more likely to be supply constrained. However, the impact on the distribution of house
price growth effects in response to shocks is ex ante ambiguous: if positive shocks were concentrated
in less constrained areas, then reducing the price response in the areas that are already less affected

97I omit the “no mobility” scenario from the beta graphs for better visibility of the other scenarios. Zero mobility
results in a narrow unimodal distribution that is almost entirely contained within the interval between beta values
of -3 and 6.
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by economic shocks could conceivably increase the dispersion in house price outcomes. However,
to the degree that reducing the highest supply constraints necessarily reduces the dispersion of
price elasticities, evenly distributed economic shocks would become less likely to have differential
effects.

For the industry wage shocks, the latter effect seems to win out. The distribution of house
price effects of wage shocks in the supply constraint scenarios is shown in Panels (c) and (d) of
Figure 17. The simulated dispersion in house price growth outcomes is reduced significantly in
both periods, with the lowest constraint scenarios (curves in green) having a narrowed distribution
and a lower Gini coefficient (see Table 14 ) than the empirical baseline constraint scenario.

Table 14 shows additional statistics on the distribution of wage shock effects on house price
growth under each constraint scenario. Comparing the baseline and the median constraint scenario,
the average house price growth declines modestly by 13-15%, but the interquartile and 90th-to-10th
spreads are reduced by more than 50% with lower supply constraints. This shows that reductions
in supply constraints have a qualitatively similar effect on the dispersion of house price growth
outcomes in response to shocks as greater inter-city mobility does.

Changes in house price betas. The impact of reductions in supply constraints on house
price betas is mixed: Panels (e) and (f) of Figure 17 show the distribution of effect betas for
the different constraint reduction scenarios. Generally, the shift from the baseline to median
constraints seems to narrow the distribution of betas and leads to more of its mass being around
a value of one, that is, indicating that cities are moving together to a larger degree. However, this
shift is not monotonic as the beta distribution associated with a reduction of constraints to the
75th percentile does not fall neatly in between the baseline and median reduction scenarios. The
reason why the effects of changes in supply constraints on betas is complicated is that the set of
cities that is driving average national prices as a result of being very supply-constrained is changing
between scenarios and so even holding many cities’ dynamics constant, their betas might change
between scenarios due to the differences in the series of average house price effects. Moreover, as
the average effect size falls, a given house price effect will imply a larger beta - yielding a complex
relationship between supply constraints and city-level co-movement.

8.8 Interaction of mobility and housing supply constraints

The two counterfactuals above showed that lower supply constraints and lower migration costs
both narrow the distribution of outcomes across cities in response to wage shocks. This raises
the question of how these two changes in fundamentals interact: does lower mobility increase or
decrease the impact of reducing supply constraints on the divergence in outcomes? I explore this
interaction by looking at the distribution of outcomes under wage shock scenarios that combine
the changes in migration costs and reductions in supply constraints from Sections 8.6 and 8.7.

Combined scenario house price growth effects. The distribution of outcomes under these
combined scenarios is shown in Table 15. Each of the four panels of the table looks at one statistic
and shows how it changes with higher migration costs (increasing from left to right) and lower
price elasticity / reduced constraints (top to bottom). Within each panel, I repeat this analysis
for each time period. For instance, the lower right corner of Section B of the first panel shows a
value of 17.67, which corresponds to the average change in house prices in response to 2012-2017
wage shocks in a scenario where price elasticities are reduced to the median and no migration is
possible. The effect is calculated relative to the baseline path to steady state of the 2012 economy
in this scenario.
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In general, we can observe that the measures of the spread of outcomes (Panels 2, 3, and 4)
are lowest when supply constraints are reduced the most and mobility is highest (lower left corner
of each section), so the equalizing effects of both of these measures are additive to some degree.
It is important to note that this is not driven by a mobility effect on the level of house prices:
while lower constraints unambiguously lower house price levels, changes in migration costs do not
have a consistent positive or negative effect at any given level of constraints. However, the effect
of mobility on lowering the dispersion in shock effects is unambiguous.

Changing importance of supply constraints. A relevant question for policymakers may
be whether potential reductions in supply constraints are more or less effective at reducing the
dispersion in shock effects when migration costs are high or low. We can infer the responsiveness to
housing policy by comparing the dispersion measures between the baseline and median constraint
scenarios (first and third row of each section), and then seeing how this difference changes across
mobility scenarios.

These effects of changing constraints on the dispersion of effects are shown in Table 16. Each
entry in this table corresponds to the change from the first row (baseline constraints) to the third
row (median constraints) in ppt and % in the corresponding section and panel of Table 15. For
example, the first entry of -6.01 is the difference in the interquartile spread between the constraint
scenarios in rows 3 and 1 of Section A, Panel 2, of Table 15. It represents how much the interquartile
spread in wage shock effects is reduced by lowering supply constraints to the median in the setting
where migration costs have decreased. The second entry of -51 represents the percentage change
that this absolute change of -6.01 ppt represents. Going from left to right in Table 16, we can
see that higher migration costs almost universally increase the (negative) effect that reductions in
supply constraints have on the dispersion of house price growth in response to wage shocks. For
example – focusing on the change in the 90th-to-10th percentile spread – the absolute decline in
dispersion when supply constraints are reduced to the median is twice as large without migration.98

8.9 Policy implications

Declining mobility and volatile house price dynamics. As noted above, there has been a
secular decline in observed U.S. inter-city mobility over the last three decades. To the degree that
this declining mobility represents an exogenous change – rather than an endogenous response to
house price patterns (Ganong and Shoag, 2017) – the quantitative analysis in the previous section
suggests that it should result in more extreme variability in house price growth across cities in
response to economic shocks. There is some evidence that this increase in variability has taken
place: Panel (b) of Appendix Figure A1 plots inter-city mobility and the 90th-to-10th-percentile
spread in real house price growth for each year over the last three decades. It shows that not just
the average house price growth is becoming more volatile after the year 2000, but the difference
between cities is also on average getting larger and more volatile. While it is beyond the scope of
this study to identify to what degree the declines in mobility have been exogenous, this trend is
qualitatively consistent with the effect of lower mobility on house price growth differences suggested
by the model.

For policy makers, this implies that if there are policies that can lower migration costs (e.g.
reductions in occupational licensing or portable welfare and unemployment benefits) then these
could be used to reduce regional differences in house price outcomes and the likelihood of extreme

98Compare Table 16 second and fourth column, showing baseline effects of -14.11 and -5.12 in the two periods,
but -28.10 and -10.72 as the effects in the no mobility scenario.
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house price events.

Increasing importance of reducing supply constraints. The counterfactuals above also
showed that changes in worker mobility through lower migration costs can mitigate the impact of
tighter housing supply constraints that widen the gap in house price growth across cities. Con-
versely, an exogenous decline in mobility makes a reduction in supply constraints more effective at
reducing the likelihood of extreme house price outcomes. To the degree that declines in mobility
have been exogenous, this means that policy changes that reduce housing supply constraints would
be more effective today at reducing the dispersion in house price outcomes, than in higher mobility
periods in the past. That is, policy makers who want to use lower housing supply constraints to
reduce the dispersion in the impact of economic shocks on cities should now more seriously consider
this policy option.

Moreover, if housing supply constraints continue to tighten in the most constrained places – as
has been the case over the last two decades (see, e.g. Gyourko et al. (2019); Aastveit et al. (2020))
– then enabling greater worker mobility through lower migration costs could mitigate the effect of
these tighter constraints on the dispersion in house price growth across U.S. cities.

Macroeconomic policy and financial regulation. The evidence provided in this paper
also has implications for macroeconomic policy and financial regulation. Glaeser (2013) reflects a
common argument for why house price changes in second-tier cities were considered bubbles, when
he notes that, during the run-up to the housing boom of the 2000s, “[s]ome denser, older cities
like New York and Boston were doing particularly well, but that can do little to explain the boom
in Las Vegas and inland California.” To the contrary, the analysis in this paper shows how large
coastal “superstar” cities doing well can in fact cause the boom in locations like Las Vegas and
inland California through migration spillovers.

This interconnectedness between cities and its effect on geographic variation in house price
growth is an important issue for policy makers as growth in local house prices is explicitly monitored
as part of financial stability assessments in the U.S.99 Being able to attribute local house price
dynamics in part to economic shocks originating in other cities that share migration links enables
a better assessment of what house price movements are related to demand fundamentals, e.g. in
the form of migration flows, and which are speculative.

Affordable housing policy and urban planning. Large increases in local house prices
as a result of population growth are a frequent source of acrimonious local policy debates, as
rising rents displace current residents and create a backlash due to “price anxiety” (Hankinson,
2018). Attempts to accommodate newcomers through construction and increased density are often
resisted by home-owners, for example by blocking rezoning attempts or setting minimum lot sizes
(Glaeser and Ward, 2009). Moreover, even when permitted, construction in response to increases
in housing demand usually occurs with delays, as I show in this paper (see Section 4.2.2), and as
others have demonstrated.100 As a result of such lags in construction, house prices become more
volatile (Paciorek, 2013).

This volatility could be reduced and local conflicts mitigated by better predicting increases in
local population. The framework in this paper for predicting spillovers from other cities’ housing

99See, e.g. the “Financial Stability Report” by Board of Governors of the Federal Reserve System (2020), which
is meant to be an “assessment of financial vulnerabilities [that] informs Federal Reserve actions” and comments on
the fact that “house price-to-rent ratios vary significantly across regional markets” (p. 15).

100See, e.g. Oh and Yoon (2020) who highlight time delays in construction after permitting, but development lags
can also arise from delays in developing marginal land (Guthrie, 2010), or from a slow permitting process (Gyourko
et al., 2008).
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markets based on migration links enables local housing authorities to better predict migration flows
as a result of shocks in other cities. For example, migration from Boston, MA, to Portland, ME,
tends to follow high house price growth in Boston.101 Thus, if the housing authority of Portland
was able to track housing markets in Boston and other cities with migration links, it could predict
housing demand as a result of migration spillovers and work to accelerate construction permits
and planning to get ahead of an anticipated congestion in its housing market.

More generally, my results suggest that there are externalities from local housing policies on
other cities that share migration links: restrictive zoning in San Francisco is not just a local
problem, but also affects Boise, ID, for instance. This highlights the need for supra-metropolitan
coordination, and regulatory collaboration that takes into account the desirability of regional or
national housing outcomes, not just local effects.

Real estate investors. The ability of migration links to predict house price correlations
between different local housing markets is also relevant for investors exposed to residential housing
markets (e.g. through residential mortgage-backed securities or real estate investment trusts).
When housing markets are highly integrated, equal-weighted portfolios of housing in different U.S.
regions can exhibit high portfolio risk as a result of the regions’ covariance with the national cycle
(Cotter et al., 2015). The mechanism proposed in this paper suggests that migration links can
be a predictive tool for anticipating co-movement in housing markets, and can thereby be used to
reduce real estate portfolio risk. Moreover, the model counterfactuals show how the cross-section
of housing market risk can be expected to change as other fundamentals, such as mobility and
supply constraints evolve.

9 Conclusion

In this paper, I have documented that house price dynamics in one city can have a causal effect on
house prices in another city because of the migration connection that these cities share. Both the
reduced-form and the structural estimates suggest that migration spillovers play an important role
in propagating economic shocks across cities and in reducing the dispersion in house price growth
effects.

Moreover, I showed that a sparsely parameterized dynamic spatial equilibrium model can gen-
erate rich patterns of geographic variation in exposure to economic shocks. The potential use of
this methodology in a U.S. context is not limited to spillover effects on housing markets: the same
model could be used to explore the network effects through migration channels of many varieties
of shocks, such as trade shocks or natural disasters, and I aim to expand the range of economic
shocks and outcomes studied in future work. For instance, it remains to be explored in more detail
what we can learn about local mortgage markets and the construction sector if we consider the
role of migration flows.

At the same time, the analysis in this paper has focused on the importance of domestic inter-
city migration flows in the U.S. However, immigration to the U.S. from other countries has often
been a more salient political issue than domestic flows. An important direction for future research
is to extend the model in this paper to incorporate the role of international migration, which can
play an important role by either complementing or counteracting the effect of domestic moves on
housing markets.

101See Appendix Figure A11
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Jordà, Ò. (2005): “Estimation and inference of impulse responses by local projections,” American
economic review, 95, 161–182.

Kalouptsidi, M. (2014): “Time to build and fluctuations in bulk shipping,” American Economic
Review, 104, 564–608.

Kalouptsidi, M., P. T. Scott, and E. Souza-Rodrigues (2020): “Linear iv regression
estimators for structural dynamic discrete choice models,” Journal of Econometrics.

Kaplan, G., K. Mitman, and G. L. Violante (2020): “The Housing Boom and Bust: Model
Meets Evidence,” Journal of Political Economy, 128.

Kennan, J. and J. R. Walker (2011): “The effect of expected income on individual migration
decisions,” Econometrica, 79, 211–251.

Landvoigt, T. (2017): “Housing demand during the boom: The role of expectations and credit
constraints,” The Review of Financial Studies, 30, 1865–1902.

Lei, L. and S. J. South (2020): “The comforts of home: The association between coresidence
with parents and young adults’ residential mobility and migration in the United States,” Popu-
lation, Space and Place, e2323.
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Table 1: U.S CZ-to-CZ domestic migration links 1990-2010

# of links % of links that overlap after. . .
Migration distance Avg. Median 1 year 2 years 5 years 10 years

Full Network 30 11 83 82 82 80

Distance > 50 mil 26 6 75 74 72 70

Distance > 150 mil 21 2 69 67 65 62

Note: Table uses continental U.S. CZ migration data constructed from IRS flows for 1990-2010
that had at least one inflow link to another CZ in 1990-2010, which includes 717 CZs. The IRS
does not record flows corresponding to < 10 tax returns, and data for years past 2010 are omitted
due to a methodology change in IRS gross flows post-2010. Link persistence is computed as the
% of links in a given year that are still links after a certain # of years for each CZ-year, averaged
over CZs and years. Networks based on migration distances (rows 2 and 3) exclude any CZ that
contains counties with a centroid that is less than the stated distance away from the centroid of
any county in the CZ for which inflow links are counted.
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Table 2: Migration cost determinants

Dependent var.: Log migration between cities
Period: 1990-2017 2005-2017
Education group: All College No college

(1) (2) (3)
Log distance -1.228*** -0.682*** -0.948***

(0.059) (0.055) (0.033)
Different region -1.126*** -0.342 -0.802**

(0.350) (0.212) (0.323)
Diff. region× Log dist. 0.137** 0.021 0.093

(0.059) (0.037) (0.058)
Different state -2.632*** -1.849*** -2.744***

(0.463) (0.406) (0.440)
Diff. state× Log dist. 0.372*** 0.187** 0.340***

(0.096) (0.084) (0.086)
Nontrad. Christ. Share diff. -0.658*** -0.389*** -0.282***

(0.136) (0.075) (0.064)
Ethnicity shares vector dist. -1.015*** -0.510*** -0.604***

(0.170) (0.090) (0.098)
Water surface -1.253*** -0.642*** -0.656***

(0.176) (0.131) (0.137)
Jan. Temp. diff. 0.022*** 0.006*** 0.010***

(0.004) (0.002) (0.003)
Industry shares vector dist. -3.523*** -1.291*** -1.070***

(0.302) (0.187) (0.181)
Observations 13,390,146 6,686,743 6,686,743

Year FE X X X
Origin City FE X X X
Destination City FE X X X

Heteroskedasticity-robust standard errors clustered at the origin CZ level in parentheses: *
p<0.10, ** p<0.05, *** p<0.01. Analysis includes migration flows between all continental
U.S. CZs, excl. New Orleans, leading to a total of 721 CZs. Migration flows by education
group 2005-2017 were imputed from ACS and IRS data as described in the text. Industry
share distance is computed as Euclidean distance between vectors of 2-digit NAICS em-
ployment shares in 2000. Ethnic distance is the Euclidean distance in CZ ethnicity shares
in 2000. Estimated using Poisson Pseudo-Maximum Likelihood with fixed effects for origin
and destination cities.
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Table 3: Reduced-form IV: first-stage coefficients

Dependent variable: ∆ Network House Pricesit

(1) (2)

Mig. NW Shock: Wage x Unavail. Land 0.82*** 1.90***
(0.04) (0.18)

Mig. NW Shock: Wage 1.00*** -2.46***
(0.02) (0.18)

Observations 15,822 15,822
Year FE X
CZ FE X
Regional trend FEs X
Migration Accessi,t−1 X
∆WNW

it X
Wage shockit X
Wage shockit × Unavail. Landi X

Heteroskedasticity-robust standard errors clustered at the CZ level in paren-
theses: * p<0.10, ** p<0.05, *** p<0.01. Includes data from 586 CZs for
1991-2017. Migration access is the migration-weighted sum of city popula-
tions. Both measures use average 1990-1995 migration flows to compute mi-
gration weights. The “Wage shocks” are Bartik shocks computed as a weighted
average of national leave-one-out wage growth by industry, with weights given
by local 3-digit NAICS industry shares in 1990.
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Table 4: Reduced-form IV spillover estimation - baseline results

Dependent variable: CZ Log House price growthit

(1) (2) (3) (4) (5) (6)

Panel A: OLS

∆ Network HPt 0.42*** 0.26*** 0.15*** 0.15*** 0.15*** 0.14***
(0.02) (0.03) (0.02) (0.02) (0.02) (0.02)

Panel B: IV

∆ Network HPt 0.65*** 0.53*** 0.38*** 0.40*** 0.29*** 0.23***
(0.02) (0.06) (0.07) (0.08) (0.06) (0.06)

Observations 15,822 15,822 15,822 15,822 15,822 15,822
1st-stage F-stat. 3,202 107 86 66 122 115

Network IV X X X X X X
Year FE X X X X X
CZ FE X X X X X
Regional trend FEs X X X X
Migration Accessi,t−1 X X X
∆WNW

it X X
Wage shockit X
Wage shockit × Unavail. Landi X

Heteroskedasticity-robust standard errors clustered at the CZ level in parentheses: * p<0.10, ** p<0.05,
*** p<0.01. Includes data from 586 CZs for 1991-2017. Network house prices are the weighted sum
of other CZs’ house price changes - including only CZs with > 150 mi. distance from the focal city
in the migration network. Migration access is the migration-weighted sum of city populations. Both
measures use average 1990-1995 migration flows to compute migration weights. The “Wage shocks”
are Bartik shocks computed as a weighted average of national leave-one-out wage growth by industry,
with weights given by local 3-digit NAICS industry shares in 1990.
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Table 5: Reduced-form spillover effects: additional results

Dependent variable:
∆ Log

House Price
∆ Log

House Price
Net

Migration
Log Hous.
Permits

Log Mtg.
Loans

Log Mtg.
Lending ($)

(1) (2) (3) (4) (5) (6)

Panel A: OLS

∆ Network HPt 0.042 0.070*** 0.019*** 0.012*** 0.003* 0.004**
(0.032) (0.023) (0.003) (0.002) (0.002) (0.002)

∆HPt × Unavail. land 0.290***
(0.066)

House price growtht−1 0.395***
(0.027)

∆ Network HPt−1 0.038**
(0.016)

Panel B: IV

∆ Network HPt 0.140* -0.033 0.050*** 0.007 0.023*** 0.026***
(0.073) (0.108) (0.016) (0.011) (0.008) (0.008)

∆HPt × Unavail. land 0.423***
(0.088)

House price growtht−1 0.575***
(0.118)

∆ Network HPt−1 0.156
(0.107)

Observations 15,822 14,650 15,822 15,469 15,800 15,800
Year FE X X X X X X
CZ FE X X X X X X
Regional trend FEs X X X X X X
Migration Accessi,t−1 X X X X X X
∆WNW

it X X X X X X
Wage shockit X X X X X X
Wage shockit × Landi X X X X X

Heteroskedasticity-robust standard errors clustered at the CZ level in parentheses: * p<0.10, ** p<0.05, *** p<0.01.
Includes data from 586 CZs for 1991-2017. Migration network by distance includes all CZs for which the center of
no component county is no closer than 150 miles to the center of any focal city component county. Network house
prices are the weighted sum of other CZs’ house price changes. Migration access is the migration-weighted sum of
city populations. Both measures use average 1990-1995 migration flows to compute migration weights. The “Wage
shocks” are Bartik shocks computed as a weighted average of national leave-one-out wage growth by industry, with
weights given by local 3-digit NAICS industry shares in 1990. Dependent variables: Housing permits are measured
in number of permitted units; mortgage loan count and lending volume includes all originated purchase loans in
HMDA data; net migration is IRS domestic migration flows as a share of CZ population.
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Table 6: Model parameters

Parameter Interpretation Source Values

Estimated parameters

θ−1
s

Elasticity of migration choices to common
city characteristics

IV estimation
1.61 (College)
2.49 (Non-college)

φ̃Hi
City-specific elasticity of house prices with
regard to housing expenditure

IV estimation 1.03-3.12

ηLD
Agglomeration effect: elasticity of wages with
regard to local industry employment

OLS fixed effects
estimation

0.057

a
Elasticity of industry sector choice with
regard to wage changes

IV estimation 0.325

Calibrated parameters
β Discount factor Dix-Carneiro (2014) 0.95

αs

Education-specific share of expenditure on
non-tradable goods affected by local
house price changes

Diamond (2016)
0.63 (College)
0.68 (Non-college)

Table 7: Location choice parameters: baseline results

Dependent variable: Adj. Mig. Probabilities

Education group: College Non-college

Estimation: OLS IV OLS IV
(1) (2) (3) (4)

∆ Log College Real Wage diff. 0.03 1.61*
(0.10) (0.82)
[0.06] [0.92]

∆ Log Non-Coll. Real Wage diff. 0.00 2.49***
(0.07) (0.51)
[0.07] [0.95]

∆ College share diff. 2.20*** -4.74 -0.59*** -6.10
(0.31) (6.91) (0.18) (4.54)
[0.25] [6.36] [0.16] [6.36]

Observations 2,877,952 2,877,952 2,877,952 2,877,952
Year FE X X X X

Heteroskedasticity-robust standard errors clustered at the origin CZ and destination CZ level in parentheses. Driscoll-Kraay
standard errors in brackets: * p<0.10, ** p<0.05, *** p<0.01. Includes data from 721 CZs for 2005-2017. The instruments in
all regressions consist of education-group specific wage shift-share instruments, and CZ-level shift-share instruments, as well
as their interaction with CZ land constraints.
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Table 8: Location choice parameters: Additional IV results

Education group: College No College

Model: No Coll.
Share

Amen.
Index

CZ Inc.
per cap.

Static
dep. var.

No Coll.
Share

Amen.
Index

CZ Inc.
per cap.

Static
dep. var.

(1) (2) (3) (4) (5) (6) (7) (8)
∆ Log College Real Wage diff. 1.27* 1.61* 0.63

(0.72) (0.83) (0.53)
∆ Log Non-Coll. Real Wage diff. 2.10*** 2.54*** 0.54

(0.42) (0.54) (0.34)
∆ College share diff. -5.68 -0.01 0.99 -7.21 -2.80 1.31

(7.48) (5.75) (5.13) (4.94) (4.18) (3.65)
∆ Amenities index diff. -0.09 -0.08

(0.17) (0.11)
∆ Log CZ Real IRS Inc. diff. 0.65 1.63***

(0.59) (0.34)
Observations 2,877,952 2,877,952 2,877,952 3,139,584 2,877,952 2,877,952 2,877,952 3,139,584
Year FE X X X X X X X X

Heteroskedasticity-robust standard errors clustered at the origin CZ and destination CZ level in parentheses: * p<0.10, ** p<0.05, *** p<0.01. Includes
data from 512 Adj. CZs for 2005-2017. The instruments in all regressions consist of education-group specific wage shift-share instruments, and CZ-level
shift-share instruments, as well as their interaction with CZ land constraints.

Table 9: Housing supply: IV baseline results

Dependent variable: CZ Log House price growthit

Specification: Average Effects Heterogeneous Slopes

(1) (2) (3) (4) (5)
∆ Housing Expenditure 1.64*** 1.68*** 1.51*** 1.00*** 1.02***

(0.08) (0.09) (0.09) (0.16) (0.16)
∆ Housing Exp. × Land unavail. 0.39*** 2.32*** 2.32***

(0.09) (0.70) (0.70)
∆ Amenities index 0.79**

(0.35)
Observations 9,234 9,234 9,234 9,234 9,234
Pred. Inverse HS elasticities:
Population: mean 1.64 1.68 1.61 1.64 1.65
Population: std. error 0.08 0.48 0.48
Population: min. 1.51 1.01 1.03
Population: max. 1.86 3.10 3.12
10-yr Treas. Rates & Infl. Expect. X X X X X
CZ FE X X X

Heteroskedasticity-robust standard errors clustered at the CZ level in parentheses: * p<0.10, ** p<0.05, *** p<0.01. Includes data
from 512 Adjusted CZs for 2005-2017. The instruments in all regressions are city-level wage Bartik shocks and their interaction with
local land unavailability and regulatory constraints. ”Housing expenditures” are the log of the sum of the wage bill in each education
group multiplied by the group’s calibrated housing expenditure share.
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Table 10: Labor demand parameter estimation

Dependent variable: ∆ Log Industry Wageι,i,t

(1) (2) (3)
∆ Log Employmentι,i,t 0.059*** 0.057*** 0.057***

(0.006) (0.006) (0.006)
Observations 170,802 170,800 170,800
Adj. CZ FE X
Industry × Year FE X X
Adj. CZ × Year FE X

Heteroskedasticity-robust standard errors clustered at the Adj. CZ and industry-
year level in parentheses: * p<0.10, ** p<0.05, *** p<0.01. Includes data from 512
Adjusted CZs for 2000-2017.

Table 11: Industry choice elasticity: IV estimates

Dependent variable: ∆ Log Ind. Emp. Shareι,i,s,t

Education group: College Non-college

(1) (2) (3) (4) (5) (6)
∆ Log Wageι,i,t 0.059 0.297*** 0.321*** 0.063 0.300*** 0.328***

(0.101) (0.112) (0.112) (0.102) (0.113) (0.112)
Observations 165,365 165,365 165,330 165,675 165,675 165,640
Year FE X X
Industry FE X X
Adj. CZ×year FE X X X X
Adj. CZ× Industry FE X X

Heteroskedasticity-robust standard errors clustered at the CZ level in parentheses: * p<0.10, ** p<0.05, *** p<0.01. Includes data from
512 CZs for 2000-2017. The instrument in all regressions consists of the leave-one out log change in national wages by industry.

Table 12: Correlations of total migration shares imputed by model simulation and IRS actuals
for year 2000.

.

Measure Avg. p1 p10 p50 p90 p99

Destination rank correlation .76 .13 .57 .80 .92 1.00

Destination outflow share correlation .88 -.01 .71 .95 .99 1.00

Note: Table shows the correlation between the IRS migration data measure of relative destination
rank or share of migration outflows and the model-imputed values. Correlations are calculated
separately for each of 512 origin Adjusted CZs across all destinations with IRS migration flow
information. The model-imputed flows are the value obtained by summing across the model-
imputed flow shares by origin-destination pair for the year 2000, multiplied by the imputed
origin population totals by education group.
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Table 13: Counterfactual 1: House price effects of wage shocks in different mobility scenarios.
The table below shows summary statistics for the effects of wage shocks on house prices under different mobility
scenarios.

House price growth effect
Baseline

mig. costs
High inter-state

mig. cost
No

mobility
Increased
mobility

Panel A: Wage shocks 2000-2007
Mean effect (ppt) 48.87 48.32 47.91 49.77
Diff. 75th to 25th ptl 13.26 21.00 22.02 11.74
Diff. 90th to 10th ptl 25.49 36.98 43.44 23.87
Gini coeff. 0.12 0.18 0.20 0.11
Panel B: Wage shocks 2012-2017
Mean effect (ppt) 20.14 20.61 21.07 20.01
Diff. 75th to 25th ptl 5.83 8.04 9.06 5.22
Diff. 90th to 10th ptl 10.64 15.86 17.64 9.61
Gini coeff. 0.12 0.16 0.18 0.11

Table 14: Counterfactual 2: House price effects of wage shocks in different supply constraint
scenarios. The table below shows summary statistics for the effects of wage shocks on house prices under different
scenarios of reduced housing supply constraints.

House price growth effect
Baseline

constraints
Reduce to

P75
Reduce to

P50

Panel A: Wage shocks 2000-2007
Mean effect (ppt) 48.87 46.01 41.66
Diff. 75th to 25th ptl 13.26 11.23 6.15
Diff. 90th to 10th ptl 25.49 18.61 11.37
Gini coeff. 0.12 0.09 0.06
Panel B: Wage shocks 2012-2017
Mean effect (ppt) 20.14 19.09 17.48
Diff. 75th to 25th ptl 5.83 4.74 2.83
Diff. 90th to 10th ptl 10.64 8.39 5.52
Gini coeff. 0.12 0.09 0.07
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Table 15: House price effects of wage shocks under combinations of mobility and constraint sce-
narios. The table below shows summary statistics for the effects of wage shocks on house prices under different
scenarios of reducing supply constraints (top to bottom) and changes in migration costs (which increase left to
right). The supply constraint variations consist of no change relative to the observed baseline, as well as moving
all price elasticities with regard to housing demand that are higher than the 75th percentile (median) to the 75th
percentile value (median).

Mean effect (ppt)
Increased
mobility

Baseline
mig. costs

High inter-state
mig. cost

No
mobility

A: ’00-’07
Baseline supply constraints 49.77 48.87 48.32 47.91
Reduce to 75th pctl 46.91 46.01 44.68 43.57
Reduce to median 42.49 41.66 40.28 39.01

B: ’12-’17
Baseline supply constraints 20.01 20.14 20.61 21.07
Reduce to 75th pctl 19.04 19.09 19.29 19.52
Reduce to median 17.45 17.48 17.57 17.67

Diff. 75th to 25th ptl
Increased
mobility

Baseline
mig. costs

High inter-state
mig. cost

No
mobility

A: ’00-’07
Baseline supply constraints 11.74 13.26 21.00 22.02
Reduce to 75th pctl 10.26 11.23 16.87 19.27
Reduce to median 5.74 6.15 8.23 9.28

B: ’12-’17
Baseline supply constraints 5.22 5.83 8.04 9.06
Reduce to 75th pctl 4.18 4.74 6.79 7.86
Reduce to median 2.61 2.83 3.76 4.07

Diff. 90th to 10th ptl
Increased
mobility

Baseline
mig. costs

High inter-state
mig. cost

No
mobility

A: ’00-’07
Baseline supply constraints 23.87 25.49 36.98 43.44
Reduce to 75th pctl 17.36 18.61 25.45 27.74
Reduce to median 11.31 11.37 14.29 15.34

B: ’12-’17
Baseline supply constraints 9.61 10.64 15.86 17.64
Reduce to 75th pctl 7.81 8.39 10.71 11.34
Reduce to median 5.42 5.52 6.72 6.92

Gini coeff. of effects
Increased
mobility

Baseline
mig. costs

High inter-state
mig. cost

No
mobility

A: ’00-’07
Baseline supply constraints 0.11 0.12 0.18 0.20
Reduce to 75th pctl 0.08 0.09 0.13 0.14
Reduce to median 0.06 0.06 0.08 0.09

B: ’12-’17
Baseline supply constraints 0.11 0.12 0.16 0.18
Reduce to 75th pctl 0.09 0.09 0.12 0.13
Reduce to median 0.07 0.07 0.08 0.08

81



Table 16: Effect of supply constraint changes on the dispersion of house price effects. The table
below shows changes in dispersion measures for the effects of wage shocks on house prices. The change compares
the difference in the measure between the median constraint scenario and the baseline constraint scenario, under
different scenarios for migration costs (increasing left to right).

Diff. 75th to 25th ptl
Increased
mobility

Baseline
mig. costs

High inter-state
mig. cost

No
mobility

A: ’00-’07
P50 - Baseline (abs.) -6.01 -7.11 -12.77 -12.73
P50 - Baseline (%) -51 -54 -61 -58

B: ’12-’17
P50 - Baseline (abs.) -2.61 -3.00 -4.28 -4.99
P50 - Baseline (%) -50 -51 -53 -55

Diff. 90th to 10th ptl
Increased
mobility

Baseline
mig. costs

High inter-state
mig. cost

No
mobility

A: ’00-’07
P50 - Baseline (abs.) -12.56 -14.11 -22.69 -28.10
P50 - Baseline (%) -53 -55 -61 -65

B: ’12-’17
P50 - Baseline (abs.) -4.18 -5.12 -9.14 -10.72
P50 - Baseline (%) -44 -48 -58 -61

Gini coeff. of effects
Increased
mobility

Baseline
mig. costs

High inter-state
mig. cost

No
mobility

A: ’00-’07
P50 - Baseline (abs.) -0.05 -0.06 -0.10 -0.12
P50 - Baseline (%) -45 -48 -55 -57

B: ’12-’17
P50 - Baseline (abs.) -0.04 -0.05 -0.08 -0.10
P50 - Baseline (%) -38 -43 -51 -54
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Figure 2: Migration inflow networks. Shading in the map indicates % of continental U.S. inflows to the city
coming from the CZ over 2000-2007 period in IRS migration data.

Figure 3: Population growth and house price growth. The graph plots average population growth and
house price growth over 2000-2007, Data shown contains 45 CZs, consisting of all continental U.S. CZs, excl. New
Orleans, with year 2000 Census population > 0.85M , and corresponding to ∼ 50% of the continental U.S. adult
population.
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Figure 4: Ilustration of network IV identification.
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Figure 5: IV dynamic network spillover effects on house prices Graphs show IV local projection coeffi-
cients corresponding to the effect η̃nwh of period t network house price growth on period t− 1 +h outcome variables
of the form

h∑
k=1

∆ lnPi,t−1+h = αi + αt + η̃nwh ∆PNWit + β′cumΓit + ξ̃P,cumi,t−1+h.

Baseline control variables Γit in all regressions include year & CZ FEs, regional trend FEs, migration access,
network log salary growth and local Bartik productivity shocks. Instruments for network house price growth in all
regressions consist of the migration-weighted network averages of productivity shocks, and of migration-weighted
productivity shocks interacted with other cities’ land share unavailable for construction. Regressions in panels a
and b also control for an interaction between local land share unavailable for construction and the productivity
shocks. Regressions in panels c and d use additional instruments consisting of the baseline network instruments
interacted with the unavailable land share in city i. The autocorrelation-robust regressions in panel b additionally
includes one lag of local and network house price growth in addition to the contemporaneous network house price
growth for which the coefficient is displayed. The lagged price variables are instrumented using two lags of the city
i productivity × land share interaction, and two lags of the baseline network instruments. Estimation uses data for
1991-2017 and only inlcudes cities at > 150 mi. distance in migration networks. Dashed lines show 95% CI based
on std. errors clustered at the CZ level.

(a) Baseline effect (b) Controlling for autocorrelation

(c) Heterogeneity: uninteracted coefficient (d) Heterogeneity: interaction with land constraint
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Figure 6: Dynamic effects: other outcomes - IV Graphs show local IV projection coefficients corresponding
to the effect of period t network house price growth with period t− 1 + h outcome variables of the form

Yi,t−1+h = αi + αt + η̃nwh ∆PNWit + β′Γit + ξ̃Pi,t−1+h.

Baseline control variables Γit in all regressions include year & CZ FEs, regional trend FEs, migration access,
local log avg. salary growth, network log salary growth and local Bartik productivity shocks, as well as local
productivity shocks interacted with local land share unavailable for construction. Baseline instruments for network
house price growth in all regressions consist of the migration-weighted network averages of productivity shocks, and
of migration-weighted productivity shocks interacted with local land share unavailable for construction. Estimation
uses data for 1991-2017. Dashed lines show 95% CI based on std. errors clustered at the CZ level.

(a) Cumul. Pop Impact of Net Mig. (log pts.) (b) Log Housing Unit Permits

(c) Log Mortgage Purchase Loans (d) Log Mortgage Lending Volume (in USD)
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Figure 7: House price growth, owner-occupied vacancy rates, and time-to-build delays. The graphs
in panels (a) and (b) plot CZ average annual house price growth during the housing booms of 2000-2007 and
2012-2017 over the change in average vacancy rates for owner-occupied housing. All averages are computed as
differences relative to the 1991-1997 average. The graphs and fitted lines include 104 CZs for 2000-2007 and 98
CZs for 2012-2017. The corresponding rental housing results are shown in Appendix Figure A8. Panel (c) shows
time-to-build delays by completion year estimated from construction start-to-completion time microdata from the
Census Survey of Construction. Region averages are estimated from regressions of individual project delays on
region-by-year fixed effects. Estimates are broken out by U.S Census region.

(a) Owner-occupied: 2000-2007 (b) Owner-occupied: 2012-2017

(c) Time-to-build delays by region
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Figure 8: Migration flows by education group: evidence for displacement. The graphs in panels (a)
and (b) plot gross out-migration of non-college workers (as % of group pop.) over gross in-migration rates of college-
educated workers, at a CZ-level, pooling data from 2005-2017. Left panel shows all CZs, and right panel shows
only CZs that fall into “high” or “low” housing supply constraint categories: High / low categories indicate land &
regulatory constraints are both above / below median. Panel (c) shows the average difference in quality-adjusted
house prices between origin and destination cities for movers of difference education groups.

(a) College inflows & non-coll. outflows: All
CZs

(b) College inflows & non-coll. outflows:
high vs. low constraints

(c) House price change for movers
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Figure 9: Predicted house price spillover examples 1995-2007. The graphs in Panels (a) and (b) plot the
actual house price growth in 1995-2007 over the predicted spillover effects on house prices as a result of shocks to
other cities consisting of: (1) Interest rate changes interacting with land constraints, and (2) Industry wage shock
exposure due to industry employment shares, interacted with land constraints. The predicted spillover effects are
computed as the predicted house price effects in other cities multiplied by the estimated network spillover coefficient
from Column 6 of Table 4. The spillover effect variables has been residualized with regard to any direct effects on
the focal city from the shock in question. Panels (c) and (d) show the effects on the house price beta for each city
of the predicted spillover house price growth.

(a) House price effect: interest rate shock (b) House price effect: industry wage shock

(c) Beta effect: interest rate shock (d) Beta effect: industry wage shock
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Figure 10: Expected weighted house price correlations between CZs The graph sorts CZs by their
migration-weighted house price correlation, and then plots for each CZ the expected house price growth correlation
1990-2017 with all other CZs, weighting each CZ using the weights stated in the legend, which are (1) migration
outflow shares (2) equal weights (3) inverse distance in miles (4) Facebook social connectedness weights, and (5)
population weights (6) Trade flow weights. A higher value therefore indicates that the link captured by those
weights is more strongly associated with a co-movement in house prices. The legend also shows the expected
correlation using the weight, with numbers in parentheses being calculated only for the smaller sample of CZs
where trade-flow-weighted expectations are available.

Figure 11: Sequence of events in the dynamic spatial equilibrium model for a group s worker
starting period t in city i

t
begins

Work in ι, consume &
pay for housing in k

Pay τ iks ,
get zkst, zιskt

t+ 1
begins

Loc.
shock zkst

Ind.
shock zιkst

Migrate
to k

Choose
ind. ι
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Figure 12: Illustration of “Renewal Action” identification. The figure shows how “renewal actions”
allow us to identify the migration elasticity in the presence of future option value terms by comparing two different
migration paths – and their associated utility – that end in the same location: Workers 1 and 2 end in the same
location and therefore, by assuming that location choices are renewal states, have the same option values in the
future. As a result, taking the difference in probabilities between these two paths will eliminate the unobserved
future option value terms E[V kst+2].

City i, t City k, t

City i, t + 1 City k, t + 1

Worker 2

Worker 1

Worker 1

V is
t+1

Worker 2

V ks
t+1

E[V kst+2]

Figure 13: Model fit: historical imputation of college shares and log migration outflow shares
in 2000. Left graph shows actual college shares by Adjusted CZ from the Year 2000 Census 5% IPUMS sample
over college shares implied by the model-based imputation of 2000-2004 migration flows by education group. 512
Adjusted CZs are shown, corresponding to the continental U.S., excluding New Orleans. Right panel shows the
model fit for the log of total outmigration shares for all destination-origin pairs. Vertical axis shows the actual value
in the IRS data, while the horizontal axis is the value obtained by adding up the model-imputed flows by education
group for each destination-origin pair for the year 2000.

(a) College shares in 2000 (b) Migration outflow shares in 2000
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Figure 14: Cumulative nominal industry wage shocks Graphs show the total change in nominal wages
implied by national industry wage trends where the left (right) panels assume that each NAICS 2-digit industry
experiences seven (six) years of its national nominal wage trend over 2000-2007 (2012-2017). Both panels show all
512 continental Adjusted CZs (mapped onto 1990 CZ boundaries), excl. New Orleans.

(a) 2000-2007 (b) 2012-2017

Figure 15: Comparison of actual house price growth to simulated wage shock effect. The graphs
plot actual house price growth for 2000-2007 (Panel A) and 2012-2017 (Panel B) for 512 Adjusted CZs relative to
the house price growth relative to baseline in the same period in the model for a stationary steady-state transition
path where the industry wage shocks are applied.

(a) 2000-2007 (b) 2012-2017
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Figure 16: Counterfactual 1: Effect of migration cost changes. The graphs in all panels show smoothed
kernel density plots, with an Epanechnikov kernel with bandwidth: 1 in (a), and 2 in (b) and 0.5 in (c) and (d).
Panels (a) and (b) show the distribution of house price growth in response to wage shocks in Adjusted CZs. In order,
the orange curve shows the decreased migration cost (i.e. increased mobility) scenario; the blue curve shows the
wage shock effects with baseline mobility; the red curve shows the distribution under the scenario with prohibitive
inter-state migration costs; and the green curve shows the no mobility scenario with constant populations. Panels
(c) and (d) show the distribution of betas for the annual house price growth effect in each period, computed by
regressing each city’s annual growth series in each counterfactual on the series of leave-one-out average growth in
each year.

(a) House price growth effect: 2000-2007 (b) House price growth effect: 2012-2017

(c) House price effect beta: 2000-2007 (d) House price effect beta: 2012-2017
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Figure 17: Counterfactual 2: reductions in house price elasticity. Maps in Panels (a) and (b) show
the reduction in the inverse housing supply elasticity implied by reducing constraints down to the 75th pctl. of
inverse elasticity, or to the median. Panels (c) and (d) show smoothed kernel density plots (Epanechnikov kernel
with bandwidths 1 (a), 2 (b) and 0.5 (c and d)) of the distribution of house price growth in response to wage shocks
in Adjusted CZs. Panels (e) and (f) show the distribution of betas for the annual house price growth effect in each
period, computed by regressing each city’s annual growth series in each counterfactual on the series of leave-one-out
average growth in each year.

(a) Reduction to P75 (b) Reduction to Median

(c) Total house price effect: 2000-2007 (d) Total house price effect: 2012-2017

(e) House price effect beta: 2000-2007 (f) House price effect beta: 2012-2017
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Figure A1: House price growth and inter-city migration trends. Panel (a) shows population-weighted
averages of gross inmigration rates in U.S. CZs from domestic origins and CZ real house price growth over time.
Gross migration rates for 2013-2017 have been smoothed due to a data issue in the IRS gross migration data for
that period, which generates excess volatility. Panel (b) plots the same gross migration rates together with the
spread between the 90th and the 10th percentile (population-weighted) of cities in real house price growth in each
year.

(a) Gross migration and house price growth avg.

(b) Gross mig. and spread in house price growth
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Figure A2: Migration inflow network examples. Shading in the map indicates % of continental U.S.
inflows to the city coming from the CZ over 2000-2007 period in IRS migration data.
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Figure A3: First stage instruments and network house price growth. Graphs show binned scatter plots
of the pairwise first-stage relationship between network house price growth and the network house price growth
instruments. All variables are residualized with regard to city and year FEs, regional trends, migration access, local
Bartik shock, local Bartik shock × land unavailability interaction, local log wage growth and network wage growth.
Data pools years 1991-2017 for 586 CZs and includes migration network with > 150 mi. distance from each city.
The left panel shows the network instrument NWPBxit that is based on the interaction of Bartik shocks with land
unavailability, and the right panel shows the first stage slope for NWPBit , which only uses Bartik shocks.
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Figure A4: OLS dynamic network spillover effects on house prices Graphs show local projection
coefficients corresponding to the correlation of period t network house price growth with period t− 1 + h outcome
variables of the form

h∑
k=1

∆ lnPi,t−1+h = αi + αt + η̃nwcum∆PNWit + β′cumΓit + ξ̃P,cumi,t−1+h.

Control variables in all regressions include year & CZ FEs, regional trend FEs, migration access, local log avg.
salary growth, network log salary growth and local Bartik productivity shocks. Regressions in panels a, b, e, and f
also include an interaction between local land share unavailable for construction and the productivity shocks, while
panels c an d additionally control for interactions of migration access, as well as local and network log salary growth,
with the local land share unavailable for construction. The extrapolation regressions in panels e and f include one
lag of local and network house price growth in addition to the contemporaneous network house price growth for
which the coefficient is displayed. Estimation uses data for 1991-2017. Dashed lines show 95% CI based on std.
errors clustered at the CZ level.

(a) Log House Price Growth: dist. > 150 mi. (b) Extrapolation: ∆PNWit coeff. (dist. > 150 mi.)

(c) Heterogen.: ∆PNWit coeff. (dist. > 150 mi.)
(d) Heterogen.: ∆PNWit × xland

i coeff. (dist. > 150
mi.)
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Figure A5: Dynamic effects: other outcomes - OLS Graphs show local OLS coefficients corresponding to
the effect of period t network house price growth with period t− 1 + h outcome variables of the form

Yi,t−1+h = αi + αt + η̃nwh ∆PNWit + β′Γit + ξ̃Pi,t−1+h.

Baseline control variables Γit in all regressions include year & CZ FEs, regional trend FEs, migration access,
local log avg. salary growth, network log salary growth and local Bartik productivity shocks, as well as local
productivity shocks interacted with local land share unavailable for construction. Baseline instruments for network
house price growth in all regressions consist of the migration-weighted network averages of productivity shocks, and
of migration-weighted productivity shocks interacted with local land share unavailable for construction. Estimation
uses data for 1991-2017. Dashed lines show 95% CI based on std. errors clustered at the CZ level.

(a) OLS: Cumul. Pop Impact of Net Mig. (log pts) (b) OLS: Log Housing Unit Permits

(c) OLS: Log Mortgage Purchase Loans (d) OLS: Log Mortgage Lending Volume (in USD)
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Figure A6: House price growth and net migration. The graph plots CZ average annual house price growth
and average net migration rates during different time periods. All period averages are net of their averages during
1991-1999. For example, the fitted line for the 2000-2007 boom period corresponds to the regression

∆ lnPBoom,i −∆ lnP ‘91-‘97,i = α+ β(NetMig%Boom,i −NetMig%‘91-‘97,i) + εi

Graph and fitted line include all 559 CZs with population > 30K, but estimate line slopes represent CZs of all
population sizes, weighted by their population and excluding New Orleans.

(a) Boom: 2000-2007 (b) Bust: 2008-2012

(c) Boom: 2012-2017 (d) 2000-2017102



Figure A7: Expected weighted house price correlations between CZs The graph sorts CZs by their
migration-weighted house price correlation, and then plots for each CZ the expected house price growth correlation
1990-2017 with all other CZs, weighting each CZ using the weights stated in the legend, which are (1) migration
outflow shares (2) equal weights (3) inverse distance in miles (4) Facebook social connectedness weights, and (5)
population weights (6) Trade flow weights. A higher value therefore indicates that the link captured by those weights
is more strongly associated with a co-movement in house prices. The legend also shows the expected correlation
using the weight, with numbers in parentheses being calculated only for the smaller sample of CZs where trade-flow-
weighted expectations are available. Each panel excludes CZs at less than the stated distance from the computation
of a CZ’s average housing correlation with each weight.

(a) Distance > 50 mi. (b) Distance > 150 mi.

Figure A8: House price growth and vacancy rates: rental housing. The graphs plot CZ average annual
house price growth during the housing booms of 2000-2007 and 2012-2017 over the change in average vacancy rates
for rental housing. All averages are computed as differences relative to the 1991-1997 average. The graphs and
fitted lines include 104 CZs for 2000-2007 and 98 CZs for 2012-2017.

(a) Rental: 2000-2007 (b) Rental: 2012-2017
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Figure A9: In- and outmigration by education and supply constraints. The graph plots gross out-
migration of non-college workers (as % of group pop.) over gross in-migration rates of college-educated workers, at
a CZ-level, pooling data from 2005-2017. CZs are divided by housing supply constraints: ”High” constraints (low)
indicate land & regulatory constraints are both (not) above median.

(a) Non-college inflows & college outflows (b) College inflows & college outflows

Figure A10: Counterfactual 1: Effect of migration cost changes on migration distances. The graphs
in all panels show smoothed kernel density plots, with an Epanechnikov kernel with bandwidth 0.1. The plots show
the distribution of year 2012 inter-city migration flows over the log distances between Adjusted CZs. The blue
curve shows the baseline of observed flows and the red curve the distribution under the scenario with prohibitively
high inter-state migration costs. College worker flows are shown in Panel (a), and non-college worker flows in Panel
(b).

(a) College flows (b) Non-college flows
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Figure A11: Migration spillover example – Boston, MA, and Portland, ME. The graph
shows net migration flows (IRS) between Boston and Portland, as well as house price growth in
both cities.
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Table A1: Summary statistics. The table below shows summary statistics for the key variables
used in the different estimations. The three panels correspond to different samples: Panel A shows
the data available for 1990-2017 for the continental U.S. CZs (under the 1990 boundary definition),
of which there are 721 (excl. New Orleans). Panel B describes the data for the 2000-2017 sample of
512 Adjusted CZs in the continental U.S. with at least 50K residents, which is used in the city-level
quantitative parameter estimations. Panel C shows the summary statistics for the 2-digit NAICS
industry-by-Adjusted-CZ panel for the years 2000-2017 used in the labor demand and industry
choice parameter estimations. Panel D describes the key city pair variables used in the location
choice estimation.

Sample Mean SD Median Min. Max. Obs.

Panel A: Reduced-form CZs 1990-2017
Population (’000s, IRS) 345.82 948.80 89.95 1 17360 20,188
Log chg. in house prices (FHFA) 2.92 4.50 2.97 -41 44 20,188
Net domestic migration (% of pop., IRS) 0.05 6.09 -0.04 -50 851 20,188
Gross domestic in-migration (% of pop., IRS) 4.70 6.26 4.37 0 858 20,188
Gross domestic out-migration (% of pop., IRS) 4.65 1.64 4.37 0 52 20,188
Bartik wage shift-share shock (1990 wts., 3-dig.) 3.08 1.27 3.07 -11 19 19,467
Construction permits (’000 housing units) 1.86 5.05 0.28 0 90 19,681
Purch. mortgage originations (’000s, annual) 5.35 16.11 0.79 0 429 20,055
Purch. mortgage orig. vol. (Mil. USD, annual) 922.42 3818.25 77.95 0 137882 20,055
Unavailable land share (%, Lutz & Sand, 2019) 26.01 21.67 19.88 0 92 19,170
Network house price chg. exposure 3.00 3.98 3.39 -24 41 19,170
Network productivity shock 3.18 1.28 3.08 -1 7 19,170
Network land share× productivity shock 0.77 0.59 0.63 -0 4 19,170

Panel B: Adjusted CZs 2000-2017

Population (’000s, IRS) 465.91 1037.90 156.30 39.0 15086.9 9,216
Log chg. in house prices (log pts, FHFA) 2.34 4.90 2.42 -39.8 28.8 9,216
Bartik wage shift-share shock (2000 wts., 3-dig.) 2.80 1.09 2.90 -1.8 6.7 9,216
Annual wages: city avg. (’000 USD, QCEW) 33.95 8.33 32.83 17.7 113.2 9,216
Annual wages: college(’000 USD, QCEW) 36.78 10.36 35.12 17.6 143.8 9,216
Annual wages: non-college (’000 USD, QCEW) 33.20 7.52 32.36 17.6 96.1 9,216
Unavailable land share (%, Lutz & Sand, 2019) 27.09 20.49 22.64 0.3 90.5 9,216
College share of pop. (%, ACS) 21.86 6.72 20.55 7.4 50.5 6,656

Panel C: Industry-by-Adj.-CZ 2000-2017

Industry employment (’000s, QCEW) 10.89 35.13 1.81 0 1096 174,116
Log chg. in industry employment (log pts) 1.15 26.15 0.77 -540 639 166,882
Avg. annual industry wages (’000 USD, QCEW) 36.93 20.07 33.38 2 1089 168,364
Log chg. in industry wages (log pts) 2.99 8.44 2.88 -256 323 166,882

Panel D: Adjusted CZ Pairs 2005-2017

College migration share i→ k (%, smoothed) 0.013 0.080 0.001 0.000 7.425 3,401,216
Non-coll. migration share i→ k (%, smoothed) 0.007 0.045 0.001 0.000 4.138 3,401,216

107



Table A2: Reduced-form house price spillover effects - by network distance

Dependent variable: CZ Log House price growthit

Network min. distance 0 mi. 50 mi. 100 mi. 150 mi.

(1) (2) (3) (4)

Panel A: OLS

∆ Network HPt 0.86*** 0.57*** 0.31*** 0.14***
(0.04) (0.04) (0.03) (0.02)

Panel B: IV

∆ Network HPt 0.69*** 0.49*** 0.35*** 0.23***
(0.10) (0.08) (0.07) (0.06)

Observations 19,170 18,063 16,794 15,822
1st-stage F-stat. 78 115 94 115
Year FE X X X X
CZ FE X X X X
Regional trend FEs X X X X
Migration Accessi,t−1 X X X X
∆WNW

it X X X X
Wage shockit X X X X
Wage shockit × Unavail. Landi X X X X

Heteroskedasticity-robust standard errors clustered at the CZ level in paren-
theses: * p<0.10, ** p<0.05, *** p<0.01. Includes data from 586-709 CZs for
1991-2017. Migration network by distance includes all CZs for which the center
of no component county is closer than the stated number of miles to the center
of any focal city component county. Network house prices are the weighted sum
of other CZs’ house price changes. Migration access is the migration-weighted
sum of city populations. Both measures use average 1990-1995 migration flows
to compute migration weights. The “Wage shocks” are Bartik shocks computed
as a weighted average of national leave-one-out wage growth by industry, with
weights given by local 3-digit NAICS industry shares in 1990.
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Table A3: Reduced-form house price spillovers: long-run effects

Dependent variable: ∆ Log House pricei,t+4
∆ Log

Pop.i,t+4

Log
Permitsi,t+4

(1) (2) (3) (4) (5)
∆ Network HPt 0.626*** 0.431** 0.633* 0.186*** 0.027***

(0.167) (0.188) (0.324) (0.046) (0.009)
∆HPt × Unavail. land 0.944***

(0.197)
House price growtht−1 2.938***

(0.508)
∆ Network HPt−1 -0.700**

(0.350)
Observations 13,478 13,478 12,306 13,478 13,052
Year FE X X X X X
CZ FE X X X X X
Regional trend FEs X X X X X
Migration Accessi,t−1 X X X X X
∆WNW

it X X X X X
Wage shockit X X X X X
Wage shockit × Unavail. Landi X X X X

Heteroskedasticity-robust standard errors clustered at the CZ level in parentheses: * p<0.10, ** p<0.05,
*** p<0.01. Includes data from 586 CZs for 1991-2017. Migration network by distance includes all CZs for
which the center of no component county is closer than 150 miles to the center of any focal city component
county. Network house prices are the weighted sum of other CZs’ house price changes. Migration access
is the migration-weighted sum of city populations. Both measures use average 1990-1995 migration flows
to compute migration weights. The “Wage shocks” are Bartik shocks computed as a weighted average of
national leave-one-out wage growth by industry, with weights given by local 3-digit NAICS industry shares
in 1990. All estimates shown for house price and population are cumulative total effects of a period t shock
on period t + 4 log house prices and population (the latter as a result of domestic net migration). Permit
effects are long-run effects on the annual flow of permits.

Table A4: Location choice parameters: Additional OLS results

Education group: College No College

Model: No Coll.
Share

Amen.
Index

CZ Inc.
per cap.

Static
dep. var.

No Coll.
Share

Amen.
Index

CZ Inc.
per cap.

Static
dep. var.

(1) (2) (3) (4) (5) (6) (7) (8)
∆ Log College Real Wage diff. 0.03 0.03 0.13*

(0.10) (0.10) (0.07)
∆ Log Non-Coll. Real Wage diff. 0.00 -0.02 0.21***

(0.07) (0.07) (0.05)
∆ College share diff. 2.20*** 2.20*** 1.68*** -0.58*** -0.59*** -0.42***

(0.31) (0.31) (0.17) (0.18) (0.18) (0.10)
∆ Amenities index diff. -0.02 -0.07***

(0.02) (0.01)
∆ Log CZ Real IRS Inc. diff. 0.26* 0.15*

(0.15) (0.08)
Observations 2,877,952 2,877,952 2,877,952 3,139,584 2,877,952 2,877,952 2,877,952 3,139,584
Year FE X X X X X X X X

Heteroskedasticity-robust standard errors clustered at the CZ pair level in parentheses: * p<0.10, ** p<0.05, *** p<0.01. Includes data from 512 Adj.
CZs for 2005-2017.
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Table A5: Housing supply: OLS baseline results

Dependent variable: CZ Log House price growthit

Specification: Average Effects Heterogeneous Slopes

(1) (2) (3) (4) (5)
∆ Housing Expenditure 0.341*** 0.351*** 0.251*** 0.237*** 0.235***

(0.03) (0.03) (0.02) (0.04) (0.04)
∆ Housing Exp. × Land unavail. 0.184*** 0.200 0.194

(0.06) (0.13) (0.13)
∆ Amenities index 0.769***

(0.09)
Observations 10,773 10,773 13,338 13,338 13,338
10-yr Treas. Rates & Infl. Expect. X X X X X
CZ FE X X X

Heteroskedasticity-robust standard errors clustered at the CZ level in parentheses: * p<0.10, ** p<0.05, *** p<0.01. Includes data from 512
Adj. CZs for 2005-2017. ”Housing expenditures” are the log of the sum of the wage bill in each education group multiplied by the group’s
calibrated housing expenditure share.

E Derivations

E.1 Static model estimating equation

In this section, I motivate the functional form for the reduced form analysis by deriving a static model of inter-city
migration. This model shows why house price spillovers between cities are possible, and disciplines the functional
form and empirical specification to test whether there are causal effects operating via migration networks. More-
over, this model introduces the key ideas underlying the discussion of identification concerns in the reduced-form
estimation and motivates the choice of control variables to include in the estimation.

Worker preferences. All workers live in some city i ∈ N . They have Cobb-Douglas utility over tradable
consumption goods with uniform prices across all locations, and local nontradable goods, including housing, with
unit cost Qit. The indirect utility for a worker ω in location i can therefore be written as:

Uit(ω) = lnAit + lnWit − α lnQit,

where α is the preference for nontradable goods. Here, Wit is the local wage and Ait captures residential amenities
from living in i.

To model the heterogeneity among workers, I assume that in each period workers draw an idiosyncratic location
amenity shock zi(ω) for each location i, which is Type 1 extreme value (Gumbel) distributed with shape parameter
θ. A smaller θ corresponds to less heterogeneity in idiosyncratic preferences among workers and therefore a higher
sensitivity to differences in common factors between locations. The idiosyncratic location amenity is realized right
after the moving decision.

In addition, whenever a worker moves between two locations i and k, she has to pay an additive and time-
invariant moving cost τ ik in utility units in the same period.

The worker ω chooses the destination location k by solving the following problem:

max
k∈N
{Ukt − τ ik + zk(ω)}.

Moreover, workers think of these moves as being once-and-for-all and don’t consider the possibility of future moves
or future realizations of wages or housing costs – an assumption that I relax later in the quantitative model.102 The

102Alternatively, one could think of workers in the static model as being born in city i, deciding to move (or not)
to some location k, and then dying at the end of the period to be replaced by a descendant who does not enter
their parent’s utility function.
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probability of a worker choosing to move from i to k in period t therefore takes the standard logit form

µikt =
exp(Ukt − τ ik)

1
θ∑N

j exp(Ujt − τ ij)
1
θ

. (31)

Production. City i has multiple industries ι. In each industry, firms produce tradable output Yι,it under
perfect competition and constant returns to scale. For simplicity, I assume that that the production technology is
Cobb-Douglas, with its components consisting of labor Lit, capital Kit and local productivity Xι,it:

lnYι,it = lnXι,it + λ lnLι,it + (1− λ) lnKι,it (32)

I follow Moretti (2011) and assume that there is an international capital market, which supplies capital elastically at
marginal cost it. Using the first order conditions of the production function, this means that wages do not depend
on the scale of production as

lnWι,it =
1

λ
lnXι,it −

1− λ
λ

ln it +
1− λ
λ

ln(1− λ)λ.

Workers are perfectly mobile across industries within a city, but choose locations based on the average wage in the
city, which is given by the employment-weighted average across local industries:

Wit =
∑
ι

(
Lι,it
Lit

)
Wι,it

I assume that local industry-level productivity can be decomposed into a national industry trend χιt and an
idiosyncratic city-level component χit:

lnXι,it = χιt + χit

To a first-order approximation, log changes in wages relative to an equilibrium in the previous period can then be
written as

∆ lnWit =
∑
ι

ω̃ι,i,t−1∆ lnWι,it

= −1− λ
λ

∆ ln it +
1

λ

∑
ι

ω̃ι,i,t−1(∆χιt + ∆χit),

where ω̃ι,i,t−1 =
Lι,i,t−1Wι,i,t−1

Li,t−1Wi,t−1
is the wage bill share of industry ι in the baseline period, which measures the

exposure of the labor market to shocks in this industry. Note that this means that we can write local changes in
log average wages as a “shift-share” function where the “shifts” are the labor demand shocks ∆χιt and ∆χit and
the exposure shares consist of the local wage bill shares (Adao et al., 2019).

Housing supply. House prices are a function of city size, i.e.

Pit = kiL
ηHi
it (33)

where ηHi is a supply elasticity parameter that can vary across cities, and κi is a location-specific housing productivity
parameter. Both of these parameters are assumed to be exogenously determined and time-invariant.

House price formation. House prices Pit are connected to housing costs Qit through a valuation function
Qit = f(Pit, ·), where the other arguments of the valuation function depend on home buyers’ information set and
inference.

In general, home buyers are pricing the current and expected future flow of rents from a home, i.e.

Pit = Qit +
Et[Qt+1]

1 + rt
+
Et[Qt+2]

1 + rt
+ . . .

I assume that home buyers are “myopic” in the sense that they price houses as if rent growth is constant at some
value gt = ḡ ∀t over time. As a result, house prices are

Pit =

(
1 + rt
rt − ḡ

)
Qit
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and their changes are given by

∆ lnPi,t+1 = ∆ lnQi,t+1 + αm
t

where αm
t = ln

(
(1+rt+1)(rt−ḡ)
(1+rt)(rt+1−ḡ)

)
, and αm

t = 0 if discount rates rt are constant over time. This is an important

benchmark case because it corresponds closely to the implicit assumption in most static spatial equilibrium models.
For instance, in constructing time series of changes in housing costs, rent data are often imputed as a constant
multiple of house prices (see, e.g. Diamond (2016); Ganong and Shoag (2017)), or that rents can be mapped
directly into contemporaneous house prices using interest rates (e.g. (Piyapromdee et al., 2014)). Similarly, spatial
models in economic geography and trade often employ models where prices for real estate clear the market each
period but are not forward-looking, such that per-period housing cost and house prices are the same (e.g. Ahlfeldt
et al. (2015); Caliendo et al. (2019); Sturm et al. (2020)).

In an extension of the baseline specification, I also relax this standard assumption and allow for the valuation
term to depend on past local price changes to incorporate the possibility of extrapolation. Then, the valuation
function can generically be written as

∆ lnQit = δp∆ lnPit + δx∆ lnPi,t−1 + αt, (34)

where in the baseline specification δx = 0.

E.1.1 Static Spatial Equilibrium

Given previous period population distribution {Li,t−1}Ni=1, migration costs {{τ ik}Ni=1}Nk=1, valuation changes αt,
wages {{Wi,t−1}Ni=1}, and previous period housing cost {Qi,t−1, Pi,t−1}Ni=1 (as well as house price growth {∆ lnPi,t−1}Ni=1

when allowing for extrapolation), and location amenities and productivities {Ait, Xit}Ni=1, an equilibrium at time
t in the static model is defined as a series of population leves {Lit}Ni=1, wages {{Wit}Ni=1}, and housing cost and
house prices {Qit, Pit}Ni=1, such that

1. Workers choose their location optimally when given the chance to migrate, such that

µikt =
exp(Ukt − τ ik)

1
θ∑N

j exp(Ujt − τ ij)
1
θ

. (35)

where
Uit(ω) = lnAit + lnWit − α lnQit,

and populations in each location evolve as

Lit =
∑
k

µkit Lk,t−1

2. Wages are determined by

lnWit =
1

λ
lnXit −

1− λ
λ

ln it +
1− λ
λ

ln(1− λ)λ

3. House prices are determined by the housing supply condition

Pit = kiL
ηHi
it

4. House prices are linked to rents through the valuation function

∆ lnQit = δp∆ lnPit + δx∆ lnPi,t−1 + αt,

where in the baseline specification δx = 0.

In the benchmark case, we are solving for N × 4 variables (wages, house prices, rent, and population for each
city), and have N equations each from the four equilibrium conditions above, so the equilibrium is exactly identified.
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E.1.2 Spillovers

We can use the migration choices to derive the expected spillovers between cities. First, note that we can take the
log of the migration choice probabilities to obtain

lnµkit =
1

θ
(Uit − τki)− ln

 N∑
j

exp(Ujt − τkj)
1
θ

 .

Then, substituting the components of flow utility for Ukt and totally differentiating both sides, we obtain

∆ lnµkit =θ−1∆ lnAi + θ−1∆ lnWit − θ−1α∆ lnQit

−
∑
j

µkjt
(
θ−1∆ lnAj + θ−1∆ lnWjt − θ−1α∆ lnQjt

)
.

That is, any increase in average migration probabilities either comes from a change in the expected utility of the
destination or a deterioration in the other available options.

This means that we can write the change in local population as

∆ lnLit =∆ ln

(∑
k

µkit Lk,t−1

)
=
∑
k

φi←kt−1

(
∆ lnµkit + ∆ lnLk,t−1

)
where φi←kt−1 = µkit−1Lk,t−2/

∑
j µ

ji
t−1Lj,t−2 is the share of city i’s population coming from city k in the previous

period. These terms represent city i’s exposure to changes in other cities.

Now, we can substitute for the log change in migration shares from above to write

∆ lnLit =
∑
k

φi←kt−1 ∆ lnLk,t−1︸ ︷︷ ︸
Migration access: ∆Mi,t−1

+θ−1 ·∆ lnAit + θ−1 ·∆ lnWit − αθ−1∆ lnQit

+ θ−1

α · ∆Q̃it︸ ︷︷ ︸
Network housing costs

− ∆Ãit︸ ︷︷ ︸
Network amenities

− ∆W̃it︸ ︷︷ ︸
Network wages

 (36)

where the notation ∆X̃it =
∑
k φ

i←k
t−1

∑
j µ

kj
t−1∆ lnXjt denotes a migration-weighted sum of the log change in

characteristic X over city i’s entire migration network.

Substituting equation 34 into the definition of the network housing cost term ∆Q̃it we can decompose the
network term as follows:

∆Q̃it =
∑
k

φi←kt−1

∑
j

µkjt−1∆ lnQjt

=αt + ζit−1(δp∆ lnPit + δx∆ lnPi,t−1)

+ δp ·

∑
k∈N

φi←kt−1

∑
j:j 6=i

µkjt−1∆ lnPjt


︸ ︷︷ ︸
Network House Price Effect:∆PNWit

+δx ·

∑
k∈N

φi←kt−1

∑
j:j 6=i

µkjt−1∆ lnPj,t−1


︸ ︷︷ ︸
Network Extrapolation Effect: ∆PNWi,t−1

= αt + ζit−1δp∆ lnPit + ζit−1δx∆ lnE[Pi,t+1] + δp∆PNWi,t + δx∆PNWi,t−1

where ζit−1 =
∑
k∈N φ

i←k
t−1 µ

ki
t−1 captures indirect migration network exposure of the focal city to its own price

changes.

We can substitute both the network housing cost and regular housing cost expressions into the population
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change equation 36:

∆ lnLit =∆Mi,t−1 + θ−1 ·∆ lnAit + θ−1 ·∆ lnWit − αθ−1∆ lnQit

+ θ−1α∆Q̃i,t − θ−1∆Ãit − θ−1∆W̃it

=∆Mi,t−1 + θ−1
(

∆ lnAit + ∆ lnWit −∆Ãit −∆W̃it

)
− αθ−1 (δp lnPit + δx∆ lnE[Pi,t+1] + αt)

+ θ−1α
(
αt + ζit−1δp∆ lnPit + ζit−1δx∆ lnPi,t−1 + δp∆PNWi,t + δx∆PNWi,t−1

)
=∆Mi,t−1 − αθ−1(1− ζit−1) (δp∆ lnPi,t + δx∆ lnPi,t−1) + αθ−1δpPNWit

+ αθ−1δxPNWi,t−1 + ξLit,

where ξLit = θ−1
(

∆ lnAit + ∆ lnWit −∆Ãit −∆W̃it

)
. In words, equilibrium population changes in city i depend

negatively on changes in the cost of living in i, and positively on the cost of living in other cities in i’s migration
network, as well as any changes in the relative attractiveness of city i due to amenity or productivity changes.

Next, we can substitute the inverse housing supply curve into this population change equation, allowing for
heterogeneous inverse housing supply elasticity ηHi . Then, isolating ∆ lnLit, we can get an expression of city i
population change in terms of its own and network characteristics:

∆ lnLit =ηMi ∆Mi,t−1 + ηxi ∆ lnPi,t−1 + ηnwi ∆PNWit + ηnwxi ∆PNWi,t−1 + ξ̃Lit

where

ηMi =(1 + ηHi αθ
−1(1− ζit−1)δp)

−1

ηxi =− ηMi αθ−1(1− ζit−1)δx

ηnwi =ηMi αθ
−1δp

ηnwxi =ηMi αθ
−1δx

ξ̃Lit =ηMi θ
−1
(

∆ lnAit + ∆ lnWit −∆Ãit −∆W̃it

)
Note that the coefficients here might differ across cities for two reasons: On the one hand, changes in the network
house prices will have a greater effect on population in cities that have a higher gross migration activity to begin
with, i.e. a smaller ζit−1. On the other hand, the population change that results in equilibrium from any change in
relative city attractiveness is smaller the greater the inverse housing supply elasticity ηHi . That is, cities where the
housing supply is inelastic see smaller migration responses for given network changes.

Now, we can simply plug this expression into ∆ lnPit = ηHi ∆ lnLit, to find the equilibrium house price growth:

∆ lnPit =ηHi

(
ηMi ∆Mi,t−1 + ηxi ∆ lnPi,t+x + ηnwi ∆PNWit + ηnwxi ∆PNWi,t−1 + ξ̃Lit

)
In the baseline estimation the effect of heterogeneity in inverse housing supply elasticity across cities is assumed to
be exogenous with regard to other explanatory variables such that I can gather its effect into the residual, but I
will also present results that explicitly allows coefficients to be variable across cities.

Thus, the main reduced form estimating equation becomes

∆ lnPit =η̃M∆Mi,t−1 + η̃x∆ lnPi,t−1 + η̃nw∆PNWit + η̃nwx∆PNWi,t−1 + α̃Pt + ξPit ,

where

η̃M =E[ηHi η
M
i ]

η̃x =E[ηHi η
x
i ]

η̃nw =E[ηHi η
nw
i ]

η̃nwxi =E[ηHi η
nwx
i ]

ξPit =ηHi η
M
i θ
−1
(

∆ lnAit + ∆ lnWit −∆Ãit −∆W̃it

)
+ (ηHi η

M
i − E[ηHi η

M
i ])∆Mi,t−1

+ (ηHi η
x
i − E[ηHi η

x
i ])∆ lnPi,t+x + (ηHi η

nw
i − E[ηHi η

nw
i ])∆PNWit + (ηHi η

nwx
i − E[ηHi η

nwx
i ])∆PNWi,t−1.
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In the baseline model without extrapolation, η̃x = η̃nwx = 0.

In order to capture potentially confounding trends included in the error term ξPit , I can explicitly control for a
number of covariates Γit, including ∆Mi,t−1, as discussed in Section 3.5. Then, the baseline estimating equation is

∆ lnPit =αi + αt + η̃nw∆PNWit + β′Γit + ξ̃Pit ,

where ξ̃Pit = ξPit − αi − αt − β′Γit captures price residuals after controlling for the confounders.

Intuitively, we solved for the increase in local house prices as a result of population changes that is consistent
with location choices. That is, after observing the change in house prices in city i in response to period t migration,
the marginal migrant is indifferent between city i and their origin city. Note that migrants in this model are not
“surprised” by the house prices changes in their destination city in response to migration, but rather take the
response of house prices in their destination city into account when deciding to move.

Identification issues arise because residual changes in house prices ξ̃Pit may be driven by residual changes in local
amenities or labor productivity relative to the migration network, as well as other idiosyncratic valuation shocks,
even after controlling for the covariates discussed in Section 3.5.

E.2 Network IV exclusion restriction derivation

Shock-level reformulation of network IV. Following Borusyak et al. (2020), I can formulate the exclusion
restriction at the level of industry shocks. For simplicity, I focus on just one instrument zit = NWPBit , but the
analysis generalizes to the case of multiple instruments. The Frisch-Waugh Lovell Theorem implies that the spillover
coefficient estimate in a panel of length T with N cities can be written as the second-stage coefficient of a residualized
IV regression of the form

ˆ̃ηnw =

∑T
t=1

∑N
i=1 zity

⊥
it∑T

t=1

∑N
i=1 zitx

⊥
it

where yit = ∆ lnPit for the main house price spillover estimation, and xit = ∆PNWit . The notation ν⊥it denotes
the residual from a projection of νit on the vector of control variables Γit detailed in Section 3.5. Combining the
definition of the network instruments in Equation 6 and the shift-share shock definition, we can write

zit =
∑
j:j 6=i

ψij‘90-‘95

Nind∑
ι=1

ω̃ι,j,‘90∆ lnWUS
ι,−j,t

=

Nind∑
ι=1

siιgι,t

where gιt ≈ ∆ lnWUS
ι,−j,t ∀j, ignoring the fact that the industry shock is constructed as a leave-one-out variable

and therefore varies slightly between cities in a finite sample.103 Here, I have combined the industry exposure
and migration network structure into a weight siι =

∑
j:j 6=i ψ

ij
‘90-‘95ω̃ι,j,‘90 that summarizes the migration network

exposure of city i to industry ι. We can then write

ˆ̃ηnw =

∑T
t=1

∑Nind
ι=1 sιgιtȳ

⊥
ιt∑T

t=1

∑Nind
ι=1 sιgιtx̄⊥ιt

,

where the notation ν̄t =
1
N

∑N
i=1 siινit

1
N

∑N
i=1 siι

represents a weighted average across cities, with weights given by cities’ relative

exposure to industry ι through their migration network.104 Moreover, sι = 1
N

∑N
i=1 siι is the average city migration

exposure to industry ι growth. This expression shows that we could estimate the same IV spillover coefficient in
an industry-level regression of industry exposure weighted city house price growth on industry exposure weighted
network house price changes, using national industry growth trends as the instrument.

103This approximation is asymptotically correct as the number of cities gets large, and simplifies the notation and
intuition substantially here. The main insight is robust to using the leave-one-out version.

104To see how I arrived at this expression, note that the numerator can be written as
∑T
t=1

∑N
i=1 zity

⊥
it =∑T

t=1

∑N
i=1

∑Nind
ι=1 siιgι,ty

⊥
it =

∑T
t=1

∑Nind
ι=1 sιgι,t

(∑N
i=1 siιy

⊥
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i=1 siι

)
=
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t=1

∑Nind
ι=1 sιgιtȳ

⊥
ιt . Rewriting the denominator

in a similar way gives the expression shown.

115



This rewriting of the estimator at the industry level provides a perspective on the identifying variation underlying
the network IV estimate: We can think of the spillover effect estimation as identifying the spillover effect from the
degree to which the covariance in industry wage growth shocks with house price growth in the cities most exposed
to the industry (the numerator) is higher in the cities that are “treated” in the form of having house price changes
in their migration network that vary with industry wage shocks (the denominator). For instance, if cities with
migration connections to technology hubs (e.g. Boise, ID) see higher house price growth precisely when tech hub
house prices rise (e.g. in San Francisco) as a result of national trends in knowledge industry wages, then this
variation allows us to infer a causal positive spillover effect.

Network IV exclusion restriction. This rewriting of the network IV estimator in the form of industry-level
shocks then allows me to formulate the exclusion restriction of the network approach as follows:

Proposition 1 If the network instrument NWPBit (or NWPBxit ) is relevant and mild regularity conditions hold
(the variance matrix of control variables has full rank, and the covariance matrices of instruments and residuals
with controls are bounded and exist), then the IV estimate of the spillover effect ˆ̃ηnw is consistent if and only if

T∑
t=1

Nind∑
ι=1

sιgιtξ̄
P,⊥
ιt →p 0.

The proof is analogous to that for Proposition 2 in Borusyak et al. (2020). Here, ξ̄P,⊥ι,t is the error in the house
price growth regression in Equation 4, residualized with regard to the control variables Γit, and averaged over cities,
weighting them by their migration network exposure to industry shocks.

This condition shows that, for the network IV estimate to be consistent, industry wage shocks cannot be
systematically higher for those industries that have a systematically larger migration network impact on cities that
are experiencing large unobserved house price shocks, conditional on control variables.

As Borusyak et al. (2020) argue, this identification allows for a city’s migration network to be endogenously
determined – it only requires the national industry trends over time to be exogenous in the sense defined in
Proposition 1. This would be invalidated, if, for example, cities that experience more migration flows from cities
that specialize in the booming tech industry are also systematically experiencing greater idiosyncratic house price
movements in a way that is not captured by their own exposure to knowledge industries or any other included
control variables.

This approach also provides insights regarding the concern that the network house price instruments are cor-
related with focal city i industry shocks if industry structure is correlated across cities that share migration links.
Note that this concern is supported by the significant coefficient on industry structure in the migration cost deter-
minants analyzed in Section 2.2: Table 2 showed that migration costs appear to be lower among cities with similar
industry structures, making them more likely to have strong migration links.

I can explicitly express this concern in the industry shock formulation of the exclusion restriction: if the direct
shift-share shock Bit is not included in the control variables, and industry wage shocks affect city i house prices,
then the house price residual ξP,⊥it would be a function of Bit =

∑
ι ω̃
⊥
ι,i,‘90gι,t. Using the definition of ξ̄P,⊥ι,t , we can

write

ξ̄P,⊥ι,t =
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i=1 siιξ
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it∑N
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=
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Note that this expression contains
∑N
i=1

∑N
j:j 6=i ψ

ij
‘90-‘95ω̃ιj,‘90ω̃

⊥
ιi,‘90, which is the average migration-weighted co-

variance in (demeaned) industry employment shares of a city with other cities. If a city is more likely to receive
migrants from other cities that are likely to have large industry employment shares in the same industries, then
this covariance will be positive, and the exclusion restriction will not hold.

Dynamic effect exclusion restriction. I also estimate IV forecasting regressions that correspond to local
projections with external instruments (Jordà, 2005; Stock and Watson, 2018) of the form

∆ lnPi,t−1+h =αi + αt + η̃nwh ∆PNWit + β′Γit + ξPi,t−1+h, (37)

where the vector Γit includes the same additional control variables as the static model (see Section 3.5), and I am
again instrumenting for the time t network price growth shock using network labor demand shocks. The coefficients
η̃nwh now represent the impulse response in period t − 1 + h of the shock. That is, the contemporaneous impacts
correspond to h = 1, the impact on the dependent variable in the year after the shock is h = 2, and so on.

116



As Stock and Watson (2018) note, to interpret η̃nwh as causal dynamic effects we need the period t network
instruments to not just be uncorrelated with contemporaneous price growth shocks ξPi,t, but also all leads and lags
of the shock. That is, the exclusion restriction becomes

T∑
t=1

Nind∑
ι=1

sιgιtξ̄
P,⊥
ι,t−1+h →

p 0. ∀h.

This condition requires that industry wage shocks are not predictable given the exposure weighted pattern of city
house price growth residuals in any period. This is a stronger condition than for the contemporaneous effect. It
would be violated, for instance, if house prices rise in anticipation of a technology boom in other cities that share
migration links.

However, this restriction again only needs to hold conditional on the included control variables. I control, for
example, for contemporaneous wage changes and productivity shocks in the focal city and its migration network,
as well as regional trends. This means that, to the degree that the economic dynamics anticipated by past house
price run-ups in the focal city are captured by contemporaneous control variables, industry shocks will be exogenous
conditional on including these covariates.

E.3 Quantitative model derivations

E.3.1 Labor demand equation derivation

Production technology. Firms in each industry ι are indifferent between workers of any group s and produce
output Yiιt that consists of tradable goods differentiated by industry. The production technology uses local labor
as the only input and has constant returns to scale:

Yiιt = XiιtLiιt,

where Liιt =
∑S
s Liιts is the sum of local industry ι employment across workers in groups s ∈ S. Here, Xiιt denotes

the local productivity of firms producing goods in industry ι. Moreover, I assume that there is perfect competition
in input markets such that workers earn their marginal product.

Tradable goods demand. I model the local demand for differentiated tradable goods following Armington
(1969).105 I assume that, within the tradables category, the consumption utility in location i over which different
groups s have Cobb-Douglas preferences is an aggregator of local industry good consumption of the form

Cit =
I∏
ι=1

Cγιiιt, (38)

where Ciιt – the industry ι goods consumption in city i – is in turn an aggregator of the utility obtained from the
consumption of differentiated goods from other locations j given by

Ciιt =

 N∑
j=1

(cijι)
σ−1
σ

 σ
σ−1

,

where σ ∈ (1,∞) and cijι is the consumption of industry ι goods from city j in city i. Trade is assumed to
be costless and product markets are competitive, so goods from a particular location cost the same in all other
locations. Therefore, we can write

P 1−σ
ιt =

N∑
i=1

(piιt)
1−σ

as the composite price index for goods from industry ι.

Based on the consumer preferences, the share of all tradable goods consumption spending going to city i goods
in industry ι takes the form (Armington, 1969)

xiιt =

(
piιt
Pιt

)1−σ

. (39)

105This demand structure is common in the trade and economic geography literature – see, e.g. Arkolakis et al.
(2012), or Adao et al. (2019) for a similar recent application.
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Product and labor market equilibrium. Competitive output markets imply that the output price equals
marginal costs in each local industry, which are given by productivity adjusted wages, as labor is the only production
input:

piιt =
Wiιt

Xiιt
(40)

As firms earn no profit, total revenues in each local goods category have to equal the total wage bill WiιtLiιt
in that sector. At the same time, revenues in industry ι and location i correspond to a share xiιtγι of global
demand, which I normalize to one. Substituting for the demand share from Equation 39 and for local prices from
the marginal cost Equation 40, this implies that the local industry labor demand equation can be written as

Liιt = W−σiιt Diιt,

where Diιt = (XiιtPιt)
σ−1

γι summarizes local industry demand and productivity shocks.

Rearranging, taking logs, and first-differencing around the equilibrium, changes in log inverse labor demand
can then be written as

∆ lnWiιt = − 1

σ
∆ lnLiιt +

1

σ
∆ lnDiιt,

To motivate a shift-share instrument approach, note that we can assume that local demand shocks can be de-
composed into a national industry component and an idiosyncratic local shock as Diιt = DιtD̃iιt. A shift-share
approach based on the effect of national industry trends on local wage changes in this model then follows directly
from proxying for national industry shocks using observed national wage changes.

Agglomeration. We can also take into account the possibility of agglomeration effects from greater employ-
ment, which have been previously documented in the literature (Diamond, 2016). Assume that

Xiιt = X̃iιtL
α
iιt,

so productivity in each industry changes with the local employment level, and X̃iιt is the residual local industry
productivity. Then, local industry wage changes become

∆ lnWiιt = ηLD∆ lnLiιt +
1

σ
∆ ln D̃iιt,

where D̃iιt =
(
X̃iιtPιt

)σ−1

γι, and ηLD =
(
α(σ−1)−1

σ

)
. This is the labor demand equation shown in Equation 17

that is taken to the data.

E.3.2 House price formation: discussion of assumptions

House price formation. House prices Pit are connected to housing costs Qit through a valuation function which
depends on home buyers’ information set. In general, home buyers are pricing the current and expected future flow
of rents from a home, i.e.

Pit = Qit +
Et[Qt+1]

1 + rt
+
Et[Qt+2]

1 + rt
+ . . .

Moreover, from a homeowner perspective, housing costs in future equilibria will evolve from current housing costs
based on a predictable growth rate git and an unforecastable shock εgit:

Qi,t+1 = Qit(1 + git)(1 + εgit).

In the context of the model, git may capture, for instance, trends in the productivity and amenity changes driving
location choices, while εgit reflects randomness introduced by idiosyncratic amenity shock realizations, or shocks to
the productivity and amenity terms. As long as home buyers know git in advance, house price changes should not
be forecastable once we control for growth in the sources of fundamental location demand. However, as Glaeser
and Nathanson (2017) note, rational pricing models can impose a significant cognitive load on homebuyers who are
trying to infer the average willingness to pay Qit or the growth rate process git from noisy data about past prices.
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Rational home buyers. If home buyers are fully rational, they would have full information about the current
forecastable expected growth rate of location fundamentals gi and the present value and history of housing cost
{Qit, Qi,t−1, Qi,t−2, . . . }. House prices are then given by

Pit =

(
1 + rt
rt − git

)
Qit.

As a result, their valuation of houses only changes between periods as the result of local shocks εgit or changes in
discount rates rt or the expected growth rate of fundamentals. Under rational pricing, log changes in house prices
can therefore be written as

∆ lnPi,t+1 = ∆ lnQi,t+1 + αit,

where αit = ln
(

(1+rt+1)(rt−git)
(1+rt)(rt+1−gi,t+1)

)
.106

Myopic home buyers. If instead home buyers are “myopic” in the sense that they price houses as if rent
growth is constant at some value gt = ḡ ∀t over time, log changes in house prices are given by

∆ lnPi,t+1 = ∆ lnQi,t+1 + αmy
t

where αmy
t = ln

(
(1+rt+1)(rt−ḡ)
(1+rt)(rt+1−ḡ)

)
. Note, however, that the myopic pricing case would have the same implication for

the relationship between house price growth and rent growth as the rational pricing model, if forecastable housing
demand changes can vary over time, but not across cites, i.e. git = gt ∀i.

E.3.3 Housing supply function

Housing developers are assumed to be price-takers who sell housing consumption units at marginal production
cost. Individual developers are marginal with regard to competition, but their output as a whole can be written
in the form of a representative firm. Housing units are supplied using a Cobb-Douglas production technology that
combines perfectly mobile construction capital Kc with units of local land Ac and local construction productivity
κi:

Hit = κi(K
c
it)
αK (Ac)αA

Housing construction has constant returns to scale in land and capital, i.e. αA + αK = 1. The developers rent
capital equipment at competitive national rates rKt , and acquire land at local land cost LCit per unit.

The cost of land is assumed to increase with the size of the overall housing stock with a location-specific
elasticity:

LCit = H
αiL
it .

The developer, however, does not take these general equilibrium effects on productivity into account in her opti-
mization problem - she treats land costs as given.

Developers choose the scale of the housing stock to maximize profits from the sale of housing units, taking
productivity as given. That is, developers solve

max
Hit
{HitPit − LCitAcit − rKt Kc

it}.

106In detail, the log change in house prices from the perspective of a rational home buyer can be rewritten as

∆ lnPi,t+1 = ln

 Qi,t+1 + Et+1[Qt+2]
1+rt+1

+ . . .

Qit + Et[Qt+1]
1+rt

+ Et[Qt+2]
(1+rt)2

+ . . .


= ln

Qit(1 + git)(1 + εgit) +
Qit(1+git)(1+εgit)(1+gi,t+1)

1+rt+1
+ . . .

Qit + Qit(1+git)
1+rt

+ Qit(1+git)2

(1+rt)2
. . .


= ∆ lnQi,t+1 + ln

(
(1 + rt+1)(rt − git)

(1 + rt)(rt+1 − gi,t+1)

)
.
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subject to the zero profit condition HitPit − LCitAcit − rKt Kc
it = 0. Solving the corresponding cost minimization

problem with regard to the input amounts, I find that the developer’s cost function is

Cit(Hit) = LC
αA

αA+αK
it H

1
αA+αK
it κ

−1
αA+αK
i (αA + αK)

(
rαKt α−αAA α−αKK

) 1
αA+αK

Note that the developer does not behave as a social planner and therefore does not take into account the indirect
impact of new construction on costs through higher land costs.

The marginal cost function from the perspective of the developer is therefore

MCit =
∂Cit(Hit)

∂Hit
= LC

αA
αA+αK
it H

1−αA−αK
αA+αK

it κ
−1

αA+αK
i

(
rαKt α−αAA α−αKK

) 1
αA+αK

However, for the city overall, land costs are endogenous, so the housing supply function for the city as a whole corre-
sponds to the representative developer’s marginal cost but taking into account the endogeneity of LCit. Substituting
for LCit, and imposing Pit = MCit, I find

Pit = φiφtH
φHi
it , (41)

where

φiH =
αiLαA + 1− αK − αA

αK + αA

φi = κ
−1

αK+αA
i

φt =
(
(rKt )αKα−αAA α−αKK

) 1
αK+αA

Equation (41) describes the inverse housing supply curve. The parameter φiH describes the inverse housing supply
elasticity, and can vary across cities depending on local land constraints.

E.4 Moments and exclusion restrictions for the structural parameter
estimation

This section complements Section 6 by providing additional details on the moments used and the exclusion restric-
tions that identify the structural parameters which are estimated using IV approaches.

E.4.1 Location choice parameter θs

The location choice sensitivity to differences in observed city characteristics is estimated from the equation

∆Mik
st = θ−1

s ∆ ln

(
Rwkst
Rwist

)
+ θ−1

s βs(∆ColSharekt −∆ColShareit) + ∆ξ̃kis,Colt .

using shift-share instruments. The exclusion restriction for the shift-share instruments and the land constraints as
a measure of housing supply slopes is that

Zlcikst ⊥ ∆ξ̃kis,Colt ∀[s× (i, k)].

where

Zlcikst =

(
Bit,‘00,2d, Bit,‘00,3d, B

nc
it,‘00, B

col
it,‘00, Bit,‘00,2dx

land
i , Bit,‘00,3dx

land
i

Bkt,‘00,2d, Bkt,‘00,3d, B
nc
kt,‘00, B

col
kt,‘00, Bkt,‘00,2dx

land
i , Bkt,‘00,3dx

land
k

)
.

Under this assumption, we can identify θ−1
s for college and non-college workers from the moments

E[Zlcikst ·∆ξ̃
kis,Col
t ] = 0.
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E.4.2 Housing supply elasticities

The key estimating equation for the housing supply elasticity parameters is

∆ lnPit = ηr∆ ln rmtgt + ηe∆ ln eit + ηHi + (ψH + ψlHx
land
i )∆ lnHDit + ∆εPit.

We can again use Bartik wage shift-shares as instruments to isolate exogenous variation in housing demand. The
identifying assumption for the parameters of the housing supply function then becomes

{Bit,’00,3d, Bit,’00,3dx
land
i } ⊥ ∆εPit

If this condition holds, we can identify the coefficients {ψH , ψlH} from the moments [∆Zpit ·∆εPit] = 0 where

∆Zpit =
(
Bit,’00,3d, Bit,’00,3dx

land
i

)
.

The identifying assumption to obtain consistent estimates of ψH and ψlH here is that unobservable shocks to house
prices are not correlated with economic shocks based on national trends to the city, other than through the effect
of the latter on housing demand and in-migration.

E.4.3 Industry choice elasticity a

The key estimating equation for the workers’ industry choice elasticity parameter a is given by

∆ lnπisιt = αist + αsιi + a∆ lnWiιt + uisιt,

where αist = ∆ ln
(∑Nind

ι=1 W a
iιtεsιi

)
. This means I can estimate a as the coefficient from a regression of changes in

the local industry employment shares for each education group s on local log industry wage changes, controlling for
a group-specific city trend αist. Note that ∆ ln εsιi = 0 has dropped out and that I have added a stochastic error
term uisιt that captures any mismeasurement of wages.

From the model, national changes in industry demand represent shocks to labor demand that are plausibly
exogenous with regard to local labor supply decisions. Therefore, I can use the national leave-one-out wage growth
∆ lnWUS

ι,−i,t. in industry ι as an instrument for local industry wage growth being higher relative to the city i average.
The identification assumption for estimating a then becomes

E[∆ lnWUS
ι,−i,t · uisιt|αist, αsιi] = 0,

which would only be violated if industries that had higher national wage growth in other cities were systematically
more likely to have higher or lower local employment shares through residual channels that are not operating through
higher wages. Note that, by conditioning on city trends, I am controlling for any network migration effects or other
city-level shocks. The elasticity a is therefore only identified off within-city differences in a given year between
local industries. Moreover, in the empirical implementation I also condition on CZ-by-industry fixed effects αsιi to
control for long-run local industry trends that might be invalidating the exclusion restriction.

Note that the timing of the model implies that industry choices in period t are based on period t wages and are
reflected in employment shares in period t+ 1, so I use employment shares in the next period to measure industry
choice shares in period t.

F Data appendix

F.1 Migration network weight construction

This section discusses how the fixed migration exposure weights are estimated. In Section 3, I show that the
migration exposure of city i to city j house prices is measured by

ψij =
1

ψ̄i

∑
k∈N

φi←k︸ ︷︷ ︸
In-migration
share for i

µk→j︸ ︷︷ ︸
Out-migration

share for k

,
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where ψ̄i = 1/
∑
j:j 6=i

∑
k∈N φ

i←kµk→j scales each city’s relative migration exposures to sum to one. I use these mi-
gration exposure weights to construct the migration network house price changes, as well as the network instruments
and any control variables measured at the migration network level.

One interpretation of this measure is that economic shocks to other cities can have effects on city i because
of their direct migration connection, or due to indirect links as they share migration connections to another city
in city i’s migration network. This is analogous to the way that industry productivity shocks can indirectly affect
other industries through shared local labor markets in network models in macroeconomics (Acemoglu et al., 2016).

There are several empirical issues to consider in constructing these migration weights: On the one hand, with
a finite number of observations, actual year-to-year migration flows between cities are only a noisy measure of the
true latent out- and in-migration probabilities. Therefore, µikt−1 and φi←kt−1 measured in a particular year might not
capture true latent probabilities for city pairs with limited realizations in the data (Dingel and Tintelnot, 2020). In
order to make these estimates of migration network connections more precise we would therefore want to average
over several years.107

On the other hand, if migration is to some degree endogenous – as is one of the key arguments of this paper
– then the migration network weights of other cities would fluctuate over time if they are measured on an ongoing
basis. This would make any estimated effects difficult to interpret as they would combine changes in weights with
changes in network prices. Moreover, if the effects of network price changes are auto-correlated, then migration
network weights would anticipate future network price changes to some degree, leading to bias if price changes are
not exogenous (Jaeger et al., 2018).

As an empirical compromise that addresses these concerns, I therefore hold the migration network weights
fixed across years at baseline period values, measured using average migration flows over 1990-1995. The migration
during this period, besides being the first years of migration data in the IRS migration flows sample, also has
the advantage of preceding the dramatic house price boom-and-bust cycle that started in the mid-1990s, and is
therefore unlikely to be caused by the house price dynamics that are of the greatest policy interest over the last
three decades. Besides, holding the migration weights fixed at a baseline period level has a strong precedent in the
literature using historical migration shift-share instruments (Altonji and Card, 1989; Boustan, 2010; Howard, 2020;
Derenoncourt, 2019).

F.2 Bartik shift-share shock construction

Both the reduced form and the structural model estimation make use of a variety of different Bartik (1991) style
shift-share instruments. This section summarizes the construction of all the different shift-share instruments used.

The fundamental idea behind these shift-share shocks is that, under some assumptions, one can obtain an
instrument for exogenous local wage changes by using the interaction between local exposure to national industry
trends with the size of those trends. Identification of the effect of local wage changes in such a setting follows either
from the exogeneity of the cross-sectional variation in exposure (Goldsmith-Pinkham et al., 2018), or the exogeneity
of national industry trends with regard to the exposure patterns (Borusyak et al., 2020).

In this paper, the model in Section 5 justifies the use of industry shift-share instruments because the industry
demand side of the Armington (1969) style setup (see Equation 17) allows for national shocks in the form of either
national shifts in consumption preferences towards industry ι (the γι term in Equation 16), or arising from a common
national component of industry productivity.

The model implies that I can construct log wage growth instruments by combining the exposure term in the
form of the local wage bill share ω̃ι,i,t0 of workers in industry ι in a baseline period t0 with shifters consisting of
national wage growth ∆ lnWUS

ι,−i,t in each industry ι in the form

Bit,t0 =
∑
ι

ω̃ι,i,t0∆ lnWUS
ι,−i,t.

The industry averages of log wage growth are computed as leave-one-out measures to avoid mechanical correlation
between the national trend estimate and city i wages (Borusyak et al., 2020). The source of industry data for all
shift-share shock is the Quarterly Census of Employment and Wages (QCEW).

Baseline period. In order to minimize bias from endogeneity in the local industry exposure – which might
result from auto-correlated national industry shocks (Goldsmith-Pinkham et al., 2018; Jaeger et al., 2018) – I fix

107Another approach to smoothing them statistically is shown in the construction of the migration-by-education-
group data set in Appendix F.6.
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industry exposure shares at the baseline level in some period t0 for each analysis. This choice trades off efficiency of
the instrument to prevent bias. In particular, the farther away the baseline period is from the years in the analysis,
the less likely the baseline year exposure shares are to reflect the effect of national trends, because employment
shares may have changed over time.

To ensure relevance of the instrument, I therefore adjust the baseline period for different analyses: For the
reduced form estimation, the earliest period for which I have industry-level employment data – and also the first
year of the panel used in my analysis – is 1990. The reduced form analysis thus uses 1990 industry employment
shares for the full 1990-2017 panel of shift-share instruments. However, in the structural parameter estimation in
Section sec:qea, I do not use any data from earlier than the year 2000. Therefore, I update the baseline period for
the structural estimation and set the year 2000 as the baseline period, using year 2000 industry employment share
shares for all shift-share instruments.

Industry aggregation level. The other data choice to be made in constructing the shift-share instruments is
the level of industry aggregation to use in defining exposure and estimating wage trends. The trade-off involved in
this decision is that using a more detailed industry definition for shift-share instruments (e.g. using 2-digit instead
of 3-digit NAICS industries) will be less reflective of actual exogenous local wage shocks over time if local industry
structure changes more between narrow categories than broad sectors, or if there are spillovers. For example, if
the local presence of Credit Intermediation (NAICS 522) firms is linked to the local growth of Funds & Trusts
(NAICS 525), then a shock to one of these narrow industries might also affect the other one. Moreover, firms
or employees might shift between these industries. However, narrowly defined shift-share exposure would miss
these effects. In addition, the QCEW data is more likely to suppress employment counts in narrow industries (for
anonymity reasons) than in broader sectors, such that the estimate of actual industry structure might be noisier at
the more detailed level. On the other hand, a broader industry definition might introduce noise due to the fact that
growth in a particular 3-digit subsector at the national level might not affect a different subsector that is contained
within the same 2-digit sector code. Aggregating across these subsectors might therefore mistakenly infer shocks
to cities’ local industries where there are none. As the exclusion restrictions for these two different aggregation
levels are the same, I construct both measures. Where possible, I use the more detailed 3-digit aggregation, except
for those application, such as the skill-specific shift-share instruments, that benefit from the more robust industry
classification of the 2-digit measure.

Education group shift-share instruments. In addition to the shift-share instruments for overall changes
in city wages, the model with heterogeneous skill groups (proxied by education levels) additionally suggests that
we can construct skill-specific shift-shares of the form

Bsit,t0 =
∑
ι

πιsi,t0∆ lnWUS
ι,−i,t.

The only difference in construction to the shift-share instrument for the city as a whole is that the weights on the
national industry trends are now given by the exposure of group s to those trends, which is proxied by the share
πιsi,t0 of workers in group s who work in industry ι in the baseline year in city i.

Education shares by industry. Computing this employment share by education group requires the use of
additional data on the education composition of different industries by city. I use Census microdata from IPUMS
for the year 2000 on education and industry of employment of sampled individuals in each Adjusted CZ to compute
the local education share by industry as follows: (1) Aggregate counts of employment by college / non-college
education group and Census industry code (1990 definitions) and Adjusted CZs, from Census microdata sample for
year 2000; (2) Create a probabilistic crosswalk of 1990 Census industry codes to 2-digit NAICS codes and apply it
to the industry codes in the year 2000 microdata to crosswalk local employment by education into NAICS 2-digit
industry codes; (3) Compute college education shares by NAICS 2-digit industry for each Adjusted CZ, replacing
local value with national average for cities with small industry employment (¡200 workers); (4) Apply estimated
education shares to QCEW local industry data (on employment and wage bills), using national average education
share by industry, where no local Census data was available.

Then, I hold these education shares constant at their year 2000 level throughout. While this will reduce the
power of the education shift-share instrument if education shares by industry shift substantially over time, constant
education shares may reduce bias by a similar logic as used above to justify constant employment shares in the
regular Bartik shift-share instruments. At the same time, microdata on education by industry is not continuously
available after the year 2000 Census, which would make updating the skill shares impossible from a data perspective,
if I wanted to use the estimation method described above.

Geographic aggregation. This paper uses two different geographic units, depending on the analysis. The
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Figure A12: Wage trends by sector. The graph plots average annual wage growth by NAICS super sector.
The data shown are average wages from the Quarterly Census of Employment and Wages, converted into real wages
by adjusting for the urban consumer CPI, and indexed to 1990 values.

reduced form section focuses on the full set of continental U.S. commuting zones based on 1990 boundaries. In
contrast, the structural estimation combines the commuting zones into “Adjusted CZs” that combine smaller CZs
with their neighbours to ensure that all resulting unit have a population of at least 50,000. In each of these analyses,
I compute shift-share instruments at the level of the geographic unit used. This means that the shift-share shocks
in the reduced-form section are at the level of regular 1990 CZs, while the shift-share shocks in the structural model
estimations are computed at the Adjusted CZ level.

Identifying variation. If there is heterogeneity in the causal effect of interest, the shift-share instruments, like
any IV approach, will identify a local average treatment effect that represents a weighted average of the causal effects
at different units. As is well known, the weights will depend on the degree to which the shift-share instruments
represent larger shocks to some markets than others (Angrist et al., 2000). Therefore, it is of interest to understand
the underlying identifying variation in the shifters used in the construction of these instruments. Three margins of
variation are particularly relevant for my analysis: education, geography, and industry.

First, differences in wage trends across industries are driving the variation over time and space in the shift-share
shocks in different CZs. These industry wage trends are shown for aggregated industry supersectors in the Appendix
Figure A12. The graph shows that more high-skilled white collar sectors, such as information, finance, and business
services have done comparatively well in recent decades, while manufacturing and construction, for instance, have
fared less well in term of wages.

Second, the cross-sectional differences in city exposure to wage shocks, either directly or through their migration
network come from the fact that cities vary in their industry structure. For instance, larger cities have benefitted
more from the technological changes favoring skilled services industries (Eckert et al., 2019). Figure A13 illustrates
this identifying variation by plotting the difference in wage trends by tercile of city size. As the left panel shows,
wage growth has been higher in larger cities than in smaller cities, with larger cities experiencing double the wage
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Figure A13: Wage trends by city size and education group. The graphs plot average annual wage
growth by different city and education groups. The data shown are average wages from the Quarterly Census of
Employment and Wages, converted into real wages by adjusting for the urban consumer CPI, and indexed to 1990
values. The subgroups in the left graph are terciles of Adjusted Commuting Zone population size, whereas the right
panel shows college and non-college group wages for the top and bottom tercile by size. Wages by education group
are computed by using year 2000 Census education shares by industry to weight industry wage growth.

(a) By city size (b) By city size & worker education

growth of small cities during 1990-2005.

Third, displacement in cities requires variation across education groups in the wage growth that they experience.
The right panel of Figure A13 shows that the differences in wage growth within city size terciles are also large.
College workers in both large and small cities experience wage growth over the last three decades that was around
50% larger than the wage growth for non-college workers.

Overall, these graphs illustrate that the shift-share shocks based on differences in group and location exposure
to national wage trends can generate substantial exogenous cross-sectional and time variation in wages, which I use
to identify the parameters of interest in both the reduced form network analysis and the structural estimation.

Constructing house price instruments from wage shift shares. To construct shift-share shocks that
can be used as instruments for local changes in house prices, I follow a large empirical literature (see, e.g. Diamond
(2016)) in interacting wage shift share shocks with a proxy for exogenous housing supply constraints. As the measure
of constraints, I use local land unavailability for construction xlandi from Lutz and Sand (2019).108 This measure
captures geographic constraints to marginal housing construction, which would be expected to increase the slope of
the housing supply curve, and thereby increase the responsiveness of house prices to the wage shocks. I aggregate
county-level measures of land constraint into commuting zone average, weighting the county-level measure by the
county population to reflect the likelihood that a city’s residents are constrained by the geography.

Matching shift-share instruments to estimations. To summarize, note that wage shift-share instruments
Bs,indit,t0

can vary with the group s for which exposure shares are computed (full city, college, or non-college), the
baseline year for the employment share exposure weights (year 1990 or 2000), and the industry aggregation (2-digit
or 3-digit NAICS). While in most of my estimations all of these variants would be valid instruments under the
same exclusion restrictions, weak instrument concerns necessitate using a subset where possible. I try to apply
the following logic in choosing the appropriate instruments: (1) Long panel estimations that use data before 2000
use the 1990 weights, and shorter panels with only post-2000 data use the newer weights. (2) In industry-level
regressions (the labor demand and industry choice parameter estimations), I match the aggregation level of the
dependent variable and the shift-share instrument. (3) All education group shift-share instruments use 2-digit

108These are comparable to the Saiz (2010) land availability measures commonly used in the literature. Lutz and
Sand (2019) build on his methodology to expand the number of covered cities and, among other things, improve
the measurement of land availability for overlapping city areas and coastal locations.
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industries because this increases the sample size and robustness of the estimated local education shares by industry.

F.3 Interest rate shock construction

As one example of spillover effects from a shock in Section 4.3, I construct predicted house price effects as a result
of changes in financing costs (in the form of long-term interest rates) that interact with difference in local housing
supply constraints.

I construct predicted house price spillovers from interest rate changes as follows: (1) I estimate the effect of
national trends in long-term interest rates on house prices at the national level during the run-up to the housing
boom of the 2000s, following a methodology similar to that in Glaeser et al. (2012). (2) I predict expected changes
in house prices over the 1995-2007 period for each city, and aggregate these predictions into network terms, using the
migration exposure weights. (3) I multiply this change in network house price by the estimated spillover coefficient
from Column 6 in Table 4 and residualize this prediction with regard to the average values for each variable in the
full set of controls used in my baseline analyses, as well as the direct effect of interest rate changes on the focal city.
(4) I compare the residualized predicted house price spillover effect from interest rate changes to the actual house
price growth over this period.

First, I estimate the effect of national trends in long-term interest rates on house prices at the national level
during the run-up to the housing boom of the 2000s, following a methodology similar to that in Glaeser et al.
(2012). That is, I run regressions of the form

lnPit = αi + β1Real10yrRatet + β2Real10yrRatet × xland
i + εit

on data for 1990-2008. Here, I follow Glaeser et al. (2012) in computing the relevant long-term real interest rate
as the differences between 10-year treasury rates and ten year inflation expectations obtained from the Livingston
survey of inflation expectations.109 Moreover, I include city fixed effects in the regressions to capture fundamental
differences in house price growth, e.g. due to land constraints, that are not driven by interest rate changes.

Table A6: Interest rate effect on house prices

Dependent variable: Log House Pricesi,t

(1) (2) (3) (4)
Real 10-year rate -0.13*** -0.13*** -0.13*** -0.05***

(0.02) (0.02) (0.02) (0.01)
Real 10-year rate× Land constraint 0.02 -0.25***

(0.03) (0.05)
Observations 13,338 12,996 13,338 12,996
CZ FE X X

Heteroskedasticity-robust standard errors clustered at the CZ level shown in parentheses: * p<0.10, ** p<0.05, ***
p<0.01. Includes data from 721 CZs for 1990-2008.

The results of this estimation, weighting each data point by the city’s population, are shown in Table A6. The
interpretation of the magnitudes is that they represent the semi-elasticity of house prices with regard to a 1 ppt
change in the real interest rate. For example, the estimate in Column 4 suggests that a 100 basis point decline in
real rates is associated with a 5 log point increase in house prices in an unconstrained city, and a larger increase in
more constrained cities.

I use the estimate with a land constraint interaction and fixed effects in Column 4 in order to construct predicted
house price effects from interest rate changes for the run-up to the boom of the 2000s during 1995-2007. That is, I
construct

̂∆95-07P iri = β̂1∆95-07Real10yrRatet + β̂2∆95-07Real10yrRatet × xland
i ,

where the change in the real rate from 1995 to 2007 in my data is −1.2 ppt. This decline in interest rates is shown
in the times series graph in Figure A14, which also shows the concomitant rise in house prices over this period.

109This survey is done by the Philadelphia Fed and is available at: https://www.philadelphiafed.org/

research-and-data/real-time-center/livingston-survey
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Figure A14: Real long-term interest rates and house prices. The graph shows the time series of long-term
real interest rates, calculated as the difference between 10-year treasury rates and ten year inflation expectations
obtained from the Livingston survey of inflation expectations. For comparison, it also shows a population-weighted
average across cities of repeat-sales house price indices from the FHFA, indexed to their level in 1991.

Note however, that the effect of interest here is the difference in cross-sectional exposure to this aggregate effect
due to spillovers, not the size of the interest rate effect in the country as a whole. The graph also shows that the
negative relationship between long-term real rates and house price breaks down during the Great Recession, so I
focus on the period before 2008, where interest rates have been emphasized as one of the reasons for an increase in
house prices.

I aggregate these predicted city-level effects into network terms, using the migration exposure weights. That
is, I construct

̂∆95-07PNW,iri =
∑
j:j 6=i

ψij ̂∆95-07P irg

as the migration exposure to interest rate effects in other cities.

Next. I multiply this predicted change in network house prices for city i by the estimated spillover coefficient
from Column 6 in Table 4 and residualize this prediction with regard to the average values for each variable in the

full set of controls used in my baseline analyses, as well as the direct effect ̂∆95-07P iri of interest rate changes on
the city i.

Last, I compare the residualized predicted house price spillover effect from interest rate changes to the actual
house price growth over the 1995-2007 period, as well as each city’s house price beta for that period, which results
in the graphs shown in Figure 9.

F.4 Amenities index constructions

I follow Diamond (2016) and Almagro and Domı́nguez-Iino (2020) in measuring the availability of local amenities
by using counts of local establishments in particular industries from the County Business Patterns data. These
establishments are chosen based on their importance for serving tourists and residents for leisure activities, and
therefore serve as proxies of how attractive amenities in a location are. Both Diamond (2016) and Almagro
and Domı́nguez-Iino (2020) provide evidence that different demographic groups may value amenities differently.
Supporting evidence that changes in local establishments are associated with changes in demographics is provided
by Glaeser et al. (2018) who note that a change in the number of certain establishments such as wine bars can
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predict an increase in the average education level of a neighborhood.

Informed by these papers, I use establishment counts in the following NAICS codes as proxies for local amenities:

• Food Services and Drinking Places (NAICS 722)

• Grocery store industry (NAICS 4451)

• Motion picture theaters (NAICS 512131)

• Dry Cleaners (NAICS 8123)

• Clothing and Accessory Stores (NAICS 448)

• Museums, historical sites, and similar institutions (NAICS 7121)

• Sports teams (NAICS 71211)

• Scenic and Sightseeing Transportation (NAICS 487)

I use the crosswalks for different NAICS classifications from Eckert et al. (2020) together with the county-level
annual CBP data for 1989-2016 to create a panel of establishments by county by NAICS 2012 code. Then, I
aggregate the county-level data to 1990 commuting zones using the David Dorn crosswalk.

Moreover, for use in the regressions I scale the number of establishments in these categories by the IRS return-
based population estimate for each CZ in order to express amenities in the form of a density of establishments per
1,000 residents.

The amenities index for each city is then computed as the first principal component Amen1st
it of the counts of

establishments per 1,000 residents in the industries enumerated above that provide cultural or consumption services.

F.5 Combining smaller commuting zones into larger geographic units

As the pairwise migration data by education group that are used in the location choice regressions suffer from very
small sample sizes if there are few data points per commuting zone, I improve the reliability of the estimates by
combining 1990 commuting zones that have less than 50,000 residents with adjacent CZs until the combined area
contains at least 50,000 residents.

I use the following algorithm to combine CZs: (1) Find all CZs with less than 50K residents; (2) For each
of these CZs, find the smallest CZ within 50 miles centroid-to-centroid distance of any component county; (3)
Combine each small CZ with the identified nearby target CZ. Repeat this loop until no more CZs have less than
50K residents. If no CZs within 50 miles exist to combine with, expand the search radius to 75 miles and then 100
miles. This adjustment mostly affects thinly populated areas in the middle of the U.S. Moreover, the adjustment
also prevents many small CZs without data in particular years from dropping from the sample.

The resulting combination of CZs into larger “Adjusted CZs” is shown in the map in Appendix Figure A15,
where adjacent CZ in the same color indicate CZs that are combined. Ultimately, the 741 original CZs are combined
into 529 Adjusted CZs with the minimum population size, of which 512 Adjusted CZs are in the continental U.S.
and form the main geographic units for the structural estimation.110 For consistency, all the structural parameters
are estimated using these Adjusted CZ geographic units, and these are also the units used in simulating the
counterfactuals.

F.6 Migration flow by education group

In order to be able to estimate location choice parameters separately by education group, I need a data set of annual
migration probabilities between city pairs for both college- and non-college-educated workers. Unfortunately, no
single data set provides this information for U.S. cities over a long time horizon.

Given enough data, we could simply calculate the empirical choice probabilities for each state of interest where
the state space consists of worker types, origins, destinations, and years. Unfortunately, the IRS data used in the
reduced form estimation does not allow for distinguishing flows of different groups of workers. The best publicly

110This total excludes New Orleans, which is again excluded due to the large shock from Hurricane Katrina in
2005/2006.
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Figure A15: Adjusted CZ definition based on combining CZs The map shows how small
population CZs are combined with nearby CZs into Adjusted CZs with at least 50K residents.
Adjacent CZs with the same color in the map (not grey) are combined into single units in the
data.

available migration data at an annual frequency for the U.S. that also contains migrant characteristics, is from
the American Community Survey (ACS) for 2005-2017, with sample sizes in the single-digit millions for most
years. However, even in the most basic setup, the state variables consist of all permutations of high and low
worker skill with potential origin continental U.S. commuting zones and destination commuting zones, so up to
2 × 512 × 512 = 524, 288 different states in each year. As a result, the raw estimates of CZ-to-CZ migration flows
by education are noisy because some cells are necessarily estimated with a small sample size.111 To improve the
precision of my estimates, I therefore apply statistical techniques for data smoothing and imputation that allow me
to make use of additional information contained in the ACS data, combine information across units and years, and
incorporate information from the IRS migration data.

Therefore, in order to overcome the limitations of individual data sets, I decompose the migration probabil-
ities by education group into components that can be reliably estimated and employ statistical tools to mitigate
weaknesses in individual data sets, for instance by combining information from multiple sources.

In particular, I decompose the share of people in education group s in city i moving to city k as follows:

µikst =
mik
st∑

sm
ik
st︸ ︷︷ ︸

Skill s share in i→ k flows

· µikout,t︸ ︷︷ ︸
Share of i→ k in all out-mig.

· (1− µiit )︸ ︷︷ ︸
Out-mig. rate from i

· Li,t−1

Lis,t−1︸ ︷︷ ︸
1 / Pop. share of type s

(42)

where mik
st = µikstLis,t−1 are the number of migrants of type s moving from i to k in period t. As noted above, I

estimate these components separately, combining data from both the ACS and the IRS.

The construction of my data set of flows by education between commuting zones proceeds in several steps:
(1) Imputing CZ-to-CZ total migration flows µikout,t from IRS data. (2) Predicting education shares for flows. (3)

Smoothing gross migration rates (1−µiit ) to account for IRS data issues. (4) Combining the components of migration
rates into predicted pairwise migration probabilities.

Imputing CZ-to-CZ flows from IRS migration data. In general, I use the aggregate data from the

111While the effective number of states is substantially smaller as the migration flow matrices are sparse, a more
elaborate state space, for instance taking into account migrant age or state of birth, would expand the number of
states to estimate even further. Moreover as migrants only represent a small share of the surveyed individuals in
each year, the effective sample size for migration purposes is much smaller.
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Internal Revenue Service Statistics of Income (IRS SOI)112 based on the near-universe of tax returns as a measure
of the relative size of overall migration flows between locations. The IRS counts moves in the form of changing
adresses on tax returns and also totals up exemptions claimed on moving tax returns – which I will use as a proxy
for the number of people moving.

The IRS data comes in the form of county-to-county flows, as well as total flows in and out of each county and
flows to and from some aggregate regions. A peculiar feature of the IRS data is that it only records county-to-county
flows by name when the flows add up to at least 10 tax returns for the pair. Smaller “unnamed” flows are, however,
included in the out- and inflow totals as well as in more aggregate flow totals by census region.

In order to avoid county pairs dropping in and out of the data if they become too small and to capture the fact
that true migration probabilities are unlikely to be precisely zero (Dingel and Tintelnot, 2020), I impute small flow
probabilities by allocating unnamed outflows from each county using a hierarchical “empirical Bayes” approach. I
assume that the likelihood of flows between regions and to cities within regions can be described as a multinomial
distribution, the parameters of which come from a Dirichlet distribution. Then, I use observed aggregate information
on regional flows, and observed named flows as empirical estimates of the prior for flow shares going to each city.
These priors are then used to allocate unnamed flows to cities. Last, allocated unnamed flows and named flows are
smoothed using again a Multinomial-Dirichlet model to estimate non-zero latent probabilities of pairwise migration
between cities.

Allocating unnamed outflows to destination regions. To allocate the unnamed outflows Nout
c from each

county c, I follow the following process: First, I subtract any foreign flows from the unnamed flows to obtain
domestic unnamed flows. Second, I initially assign these unnamed flows to the regional totals listed as going to the
same state or out-of-state to one of the four Census regions (Northeast, Midwest, South, West). Any remainder is
assigned equally to each of these 5 categories. Third, I smooth the allocation of unnamed flows by assuming that
the distribution across the 5 destination categories follows a multinomial distribution, with probabilities θregic of an
unnamed flow from c going to a destination in each of these categories i. That is, I assume that the probabilities
θregic of an unnamed flow going to a destination in each of these categories have a joint density

p(θreg1c , . . . , θ
reg
5c |α) ∝

∏
i∈{1,5}

(θregic )
αi−1

,

where
∑
i∈N θic = 1 and the parameters αi characterize the prior distribution. I choose a non-informative prior of

αi = 1 ∀i (a uniform distribution over all possible values of θregic ), and treat the allocated unnamed migration flows
to each region as data y that is used to update the parameter estimate (Gelman et al., 2013). The marginal means
of the posterior distribution will be given by

E[θregic |y] =
nc→i + αi

Nout
c +

∑
i αi

,

where the nc→i are the unnamed flows initially allocated to region i. The posterior estimate of the unnamed flows
to each region is then given by n̂regc→i = E[θregic |y] ·Nout

c . I compute n̂regc→i for each county in each year.

Allocating unnamed outflows to counties within regions. Once unnamed outflows are allocated to
regions, I distribute them across counties in each region. For each region, unnamed flows can only be allocated to
counties that do not already have named outflows registered in the IRS data. Again, I assume that flows to each
county within a region follow a multinomial distribution. For each of those potential destination counties within a
region, I again form a non-informative prior with a uniform density over migration probabilities, i.e. αk = 1 ∀k for
the share of flows to that region that would go that county. The data used to update that prior is the share of all
named flows to any county in that region – from other counties in the set Call – that go to each county. That is, I
use the data of observed named flows to update my prior for allocating unobserved flows, which can be thought of
as an approximation to a complete hierarchical Bayesian analysis (Gelman et al., 2013).

To be precise, the Dirichlet posterior mean of the share θctykic of outflows from c going to county k, conditional
on going to region i is

E[θctykic |y] =

∑
j∈C nj→k + αk∑

k∈Cunic

∑
j∈Call nj→k +

∑
j∈Cunic

αj
,

where Cuni is the set of counties that are potential unnamed destinations in region i from the perspective of
origin county c. Then, final imputed unnamed flows from county c to county k in region i are given by n̂c→k =
n̂regc→i · E[θctykic |y], calculated separately for each year.

112Available at URL: https://www.irs.gov/statistics/soi-tax-stats-migration-data
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Last, I apply David Dorn’s crosswalks to aggregate county-to-county flows to 1990 commuting zones (CZ),
combining small CZs into entities of at least 50K residents (see Section F.5), and treating within-CZ flows as non-
migrants. Then, I drop any flows from and to CZs in Hawaii and Alaska, focusing on cities in the contiguous U.S., as
well as flows to and from New Orleans, which experiences highly abnormal migration flows as a result of Hurricane
Katrina in 2005/2006. For the remaining CZs, I aggregate all observed or imputed outflows to the other CZs in the
sample and compute the share of outflows going to each destination CZs, which gives me the conditional migration
probability µikout,t.

Gross migration rates. The previous imputation was for migration shares conditional on leaving the CZ. I
also use the IRS data to compute the overall level of out-migration 1 − µiit from each CZ in each year. However,
the IRS changed its methodology for inferring moves from tax returns starting with the tax returns for income year
2011, generating a break in the series of gross migration rates (Molloy and Smith, 2019). After this transition, gross
migration rates in the IRS data seem to exhibit a larger-than-normal year-to-year volatility that is not supported by
other data sources (e.g. the CPS migration rates). However, there is no reason to believe that this change in gross
migration rates affects relative migration shares for different destinations and differences between CZs in migration
activity systematically.

To remove this extraneous volatility in gross migration in later years from the data, I impute the overall level
of gross migration for each CZ in the following way: I regress aggregate population-weighted averages of gross
inter-city outmigration from the IRS (MigIRS,t) on the equivalent measure of gross migration to the continental
U.S. in the American Community Survey (MigACS,t) in a regression of the form

MigIRS,t = α+ βMigACS,t + εt

for the period 2005-2010. I predict gross IRS migration for 2011-2017 from the observed ACS values and the
predicted relationship from the regression. Then, I impute individual CZ gross migration rates by applying the
observed ratio of their gross out-migration to the average in the IRS data to the new imputed average value for
post-2011 data. That is, I compute

1̂− µiit = M̂igi,t =
Migi,IRS,t
MigIRS,t

(
α̂+ β̂MigACS,t

)
,

which is my measure of overall CZ outmigration rates. While I could, in theory, rely only on the ACS data to
construct the same flows, the ACS data is meant to capture relative representation of population at the local level,
but is not designed to provide an accurate count of population (and therefore migration) levels. The IRS data,
which uses the universe of tax returns therefore seems better suited to estimate the size of total flows between cities.
The ACS data is used instead to estimate the composition of flows and local populations.

Empirical Bayes shrinkage estimate of education flow shares. Next, I compute the share of the different
education groups in flows between CZs. Because the ACS data on city-to-city flows is very noisy on an annual basis,
so is the share of these flows that can be attributed to different education groups. However, due to the fact that
migration by skill share needs to fulfill adding-up constraints, I can use information from other parts of the ACS
data to predict pairwise flows and then apply an empirical Bayes shrinkage estimator to combine these predicted
skill shares with the actually observed values.

I proceed in three steps: First, I use a version of the post-LASSO estimator of Belloni et al. (2013) to predict
education shares for city-to-city flows. This involves first applying a Least Absolute Shrinkage and Selection
Operator (LASSO) to select the origin and destination city characteristics that best predict the observed non-
college share nci of migrants between two cities. This estimator chooses the coefficients on predictive characteristics
by solving:

β̂Lasso = arg min
β

n∑
i

nci − p∑
j

xi,jbj

2

+ λ

p∑
j

‖bj‖

where i indexes a CZ pair-year unit, and xi,j represents the candidate characteristics for non-college city pair flow
share prediction, which consist of: the non-college share among all inflows into the origin city and destination city;
all migrant outflows from the origin city; the non-college share of the total population in the origin and destination
cities; the log of the total and non-college population levels in the origin and destination cities; and a constant. The
penalty term λ is chosen by cross-validation with 10 folds, and the estimator applied to the pooled city pair data
for 2005-2017 selects a non-zero coefficient for 6 out of the 10 candidate variables, omitting the total population
levels, the log of the destination non-college populations, and the non-college population share in the origin city.
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The selected non-zero coefficients with non-zero coefficients are then used in an OLS forecasting regression, and the
OLS coefficients β̂OLS are used to forecast a predicted non-college share

n̂cpredi = Xiβ̂
OLS,

and compute the standard error of the non-college share forecast spredi . To reduce outliers generated by the linear
forecast, I cap predictions to be no bigger than 99%.

Second, I compute the estimated non-college shares of city-to-city flows n̂cACSi in the ACS microdata. The
standard error of the ACS non-college share n̂cACSi in flows computed from IPUMS microdata (Ruggles et al., 2020)
can be computed approximately as (Bureau, 2005–2017):

sACSi = df ·

√
99

n̂ACSi

n̂cACSi (1− n̂cACSi ),

where n̂ACSi are the total flows observed for city pair-year i in the ACS data – the denominator of n̂cACSi – and df
is a design factor that reflects the ACS sample design and is obtained for each year from Bureau (2005–2017).113

Note that for non-college shares close to zero or one, I follow the guidance in Bureau (2005–2017) and substitute
2% and 98%, respectively, for the purpose of the standard error calculation.

Third, I combine the predicted value n̂cpredi with the noisy observed non-college share n̂cACSi for each city pair
in each year by taking a weighted average, with weights that account for the relative uncertainty of the raw ACS
estimate and the predicted value. To combine the two estimates, we can treat the predicted value as a prior with
normal distribution N(n̂cpredi , spredi ), and the ACS data as being generated by a process with a normal distribution

N(n̂cACSi , sACSi ). Then, for any symmetric loss function, the optimal Bayes posterior estimator for the non-college
share is

n̂cebi =

(
sACSi

sACSi + spredi

)
n̂cpredi +

(
spredi

sACSi + spredi

)
n̂cACSi .

Intuitively, this “empirical Bayes” estimator n̂cebi adjusts the raw non-college shares by moving them towards their
expected value – “shrinking” the deviation — and does so to a greater degree if the raw estimate was based on
a smaller sample size, and thus has a greater standard error. This approach to noise reduction by combining two
estimates with one being treated as a Bayesian prior, although it is empirically constructed, is often called “empirical
Bayes shrinkage” and has had a long history of statistical applications (Morris, 1983; DuMouchel and Harris, 1983;
Gelman et al., 2013). One advantage of this method is that I can impute skill shares even for migration city pairs
that are not observed in the ACS data, but for which the IRS data records migration flows. For values missing in
the ACS data, I assume sACSi → ∞, such that the estimator loads entirely on the predicted value n̂cpredi in the
estimation. As a result, this method yields an estimate of the non-college share - and therefore also the college

share - of the migrant flows between each city pair and for each year. I use these estimates of
mikst∑
sm

ik
st

in equation

42 to compute the city pair migration probabilities by education group.

As this approach to data cleaning is “statistical” rather than fully model-dependent, there might be a concern
that the smoothing and imputation procedure removes variation of interest from the data. However, for large
pairwise migration connections, the effect is minimal as the empirical observation dominates the weak prior in
generating migration probability estimates. For the city pairs with zero observations where the imputation procedure
and allocation of unnamed flows makes relatively large changes relative to the observed flows, we know that the
“zero” flow estimate is wrong for some city pairs from the discrepancy between total and named flows. Assuming
these flows to be precisely zero would therefore be equivalent to discarding this information. This issue is exacerbated
when taking logs of the flows: a common approach in the applied literature to this “zero flow” problem is to discard
the zero observations implicitly when taking logs, use ad hoc adjustments such as adding 1 to each observation,
or use nonlinear estimators that treat the observations as precisely zero. By using information available in other
parts of the data set to determine which of the censored observations are more or less likely to actually be zero, I
therefore think that I am adding information relative to these alternatives.

Substituting all the estimates of migration flow components described above into Equation 42 then yields the
estimate of education-share specific location choice probabilities µ̂ikst that I use in the structural estimation.

113The design factors obtained from Bureau (2005–2017) for the applicable characteristic “Residence 1 Year Ago”
is 3.0 for 2005–2008, 2.9 for 2009–2011, and 2.8 for 2012–2017.
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F.7 Quality-adjusted house price index

In order to be able to compare house prices across cities, it is necessary to adjust them for differences in the quality
of the housing stock. I follow Albouy and Ehrlich (2018) in constructing a quality-adjusted index of commuting
zone-level house prices for the year 2000. House price data are obtained from the United States Census Integrated
Public-Use Microdata Series (IPUMS), from Ruggles et al. (2020).

House price indices for each commuting zone j are calculated from a 5% sample from year 2000 Census. The
sample is restricted to owner-occupied units. I regress the logarithm of house value lnPij for each household i on
hedonic control variables Xij , and indicator variables for each CZ cell. The regression specification is

lnPij = β′Xij + ψj + εi,

where the estimated CZ fixed effects ψj are then treated as the commuting zone-level house price premia or discounts.

The housing characteristics Xij included in the regression are:

• 10 indicators of number of units in the building

• 9 indicators for when the building was built (by decades or 5-year spans)

• 9 indicators for the number of rooms, 6 indicators for the number of bedrooms, as well as indicators for
number of rooms interacted with number of bedrooms

• 2 indicators for complete plumbing and kitchen facilities

I follow Albouy & Ehrlich (2018) in estimating the regression in two stages: First, the regression is run weighting
by census-housing weights, adjusted by the weight of the PUMA in the commuting zone (following David Dorn’s
crosswalks). A new value-adjusted weight is calculated by multiplying the CZ-adjusted census-housing weights by
the predicted house value from this first regression using housing characteristics alone, but omitting CZ differences.
A second regression is run using these new weights on the housing characteristics, along with the CZ indicators.
The housing-price indices are obtained from the CZ fixed effect variables estimated in this second regression.

In order to compare house prices across cities, I then compute the predicted price of a “standard” home in each
city, where “standard” is defined as using the mode of each variable in the hedonic housing characteristics. The
baseline price is thus calculated for a single-family detached home, built in the 1990s, with 3 bedrooms and 6 rooms
overall, and with complete kitchen and plumbing facilities. To this baseline home value is added the commuting
zone house price indicator to compute quality-adjusted prices in each commuting zone.

This index is the converted into a panel under the assumption that quality differences are constant at their year
2000 values by constructing CZ-level values for other years using the FHFA repeat-sales index. That is, I apply the
local house price growth in the FHFA to the year 2000 house price index to construct a 1990-2017 panel of house
prices that has been adjusted for year 2000 quality differences.

F.8 Real wage index calculation

In order to compute the levels of real wages across cities for the welfare comparison, I need to make some assumptions
about the distribution of industry productivity εsιi. In particular, I assume that the attractiveness of retail trade
(NAICS codes 44-45) does not vary across cities and is normalized to one.114 That is, εsi,Retail = εsj,Retail = 1 ∀i, j ∈
N . This allows me to use the employment shares and industry-level wages to infer the relative productivity terms
for all other local industries from

πist,ι
πist,Retail

=
W a
iιtεsιi

W a
it,Retail

which I can then aggregate into a wage index

W̃ist = Γ

(
a− 1

a

)(Nind∑
ι=1

W a
iιtεsιi

) 1
a

.

114This can be justified by noting that the employment share of retail is relatively large in all cities and varies
little relative to that of other industries.
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In order to convert this into the real wage index used in the welfare calculation, I adjust the wage index for differences
in house prices:

Rwist =
W̃ist

Pαsit

The quality-adjusted house price levels are computed as described in Appendix Section F.7. Without loss of
generality for the welfare calculations, all real wages are expressed relative to those for the New York City commuting
zone.

This real wage index is computed for observed reference years (years 2000 and 2012), and are then converted
into baseline steady state level differences by applying the relative change in real wages along the steady state path
to the relative real wage index.

Note also that the log change in the income index can be written as

∆ ln W̃ist =
1

a
ln

( I∑
ι=1

πisιt
W a
iιt

W a
iι,t−1

)
.

That is, the growth in expected income for a worker of group s consists of a weighted average of the growth in
industry wage rates, with the weights depending on the expected suitability of those industries for the worker –
which is reflected in past workers’ industry choices.

F.9 Trade flow link construction

One alternative measure of city-to-city links that I consider is the value of trade flows between them. This section
describes how I construct a measure of the trade flow link between cities.

Trade flow data source. As the basis for the computation of trade flows between areas, I use the Commodity
Flow Survey (CFS) Public Use Microdata for 2012 provided by the U.S. Census Bureau. This data is provided at
the level of CFS areas, which are aggregations of counties, and captures the value and weight of individual shipments
between CFS areas.

Computing CFS area trade links. First, I aggregate the microdata into origin-destination CFS area
pair shipment values by summing across individual items, adjusting for a given weight factor that captures the
representativeness of each line item. Then, for each origin CFS area, I compute the share of total trade value sent
to each other CFS area. This is the measure of the strength of trade links between areas, which I then crosswalk
to commuting zones.

Area crosswalk to commuting zones. I use a crosswalk from CFS areas to counties and from counties to
1990 commuting zones to probabilistically map CFS areas to commuting zones. CFS areas tend to be larger than
commuting zones: the continental U.S. data contains 70 CFS areas, which I map into 169 commuting zones, and
only 8 CZs map into more than one CFS area. I assume that CZs that are fully contained within a CFS area inherit
all of the trade links of that CFS area. That is, their links with other CFS areas and the CZs contained within
them are the same as for the CFS area that they are a part of. Where a CZ contains counties that are part of
different CFS areas, I take a weighted average of the links of those CFS areas with other areas, weighting them by
the share of the respective counties in the CZ’s total population in the year 2000. The result of this crosswalk is a
CZ-to-CZ measure of the relative strength of trade links with other CZs from the perspective of a CZ as the origin
of trade flows.

G Counterfactual estimation algorithms

G.1 Rewriting the dynamic spatial equilibrium model in changes

The goal of this section is to rewrite the dynamic model in changes, such that it can then be simulated based on
series of growth rates without having to know the levels of unobservable fundamentals. This derivation builds on
the method used in Caliendo et al. (2019), which I adapt to the case of heterogeneous migrant groups.
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I start by taking the ratio of migration probabilities from equation 14 between two time periods to obtain

µiks,t+1 = µikst ·
exp(υkst+1 − υkst )

1
θ∑N

j

exp(υjst+1−τ
ij
s )

1
θ∑N

j exp(υjst −τ
ij
s )

1
θ

=
µikst(U̇kst+1)

1
θ∑N

j µ
ij
st(U̇

js
t+1)

1
θ

(43)

Here, I have made use of the notation U ist = exp(υist ), and ẋt+1 = xt+1

xt
. Also, note that I have been able to eliminate

moving costs from the expression because they are assumed to be constant over time.

Next, I difference the conditional value function as stated in equation 12 to obtain

υist+1 − υist = Uis,t+1 − Uist + βE[V ist+2 − V ist+1]

Taking exponentials of both side, using equation 13 to first substitute for the option value of location i, and then
substituting the definition of flow utility Uist and the definition of U ist , we get

U̇ ist+1 =

(
Ais,t+1

Aist

)(
W̃is,t+1

W̃ist

)(
Qi,t+1

Qit

)−αs (∑N
k exp(υkst+2 − τ iks )

1
θ∑N

k exp(υkst+1 − τ iks )
1
θ

)βθ

= Ȧis,t+1
˙̃
W is,t+1(Q̇i,t+1)−αs

(
N∑
k

µiks,t+1(U̇kst+2)
1
θ

)βθ
(44)

Here, I have also assumed rational expectations on the part of the migrants to drop the expectation operators for
future value terms.

Assuming no extrapolation, the wage index can be written in changes based on the definition in equation 10 as

˙̃
W is,t+1 =

(∑
ι

πιist

(
Ẇιi,t+1

)a) 1
a

=

(∑
ι

πιist

(
(L̇i,ι,t+1)ηLD ( ˙̃Diι,t+1)

1
σ

)a) 1
a

, (45)

where in the second line I have substituted from the labor demand equation 17 written in changes as Ẇιi,t+1 =

(L̇i,ι,t+1)ηLD ( ˙̃Diι,t+1)
1
σ .

Similarly housing cost changes can be rewritten starting from their definitions in equations 10 and 20:

Q̇is,t+1 = Ṗis,t+1e
−∆αt

=
˙̃
φi,t+1e

−∆αt( ˙HDit)
φ̃Hi , (46)

where ˙HDit =
∑
ι

∑
s αsWιi,t+1Lis,ι,t+1∑
ι

∑
s αsWιi,tLis,ι,t

.

The evolution of local populations by education group over time is simply restated here as

Li,t+1 =
∑
s

Lis,t+1 =
∑
s

∑
k

µkistLkst. (47)

Last, to obtain the change in local industry employment, we begin by computing changes in industry choice
shares by education group, which can be done analogously to migration shares to obtain

π̇isιt =
πisι,t−1Ẇ

a
iιt∑Nind

ι=1 πisι,t−1Ẇ a
iιtεsιi

Then, industry employment changes are given by

L̇isι,t+1 = π̇isιtL̇is,t+1 (48)
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Note that equations 43, 44, 45, 46, 47, and 48 define a system of equations that can be solved for changes
in population, house prices and wages, starting from a particular period’s values as long as we assume that
˙̃
φi,t+1

˙̃
φt+1e

−∆αt = 1 ∀t for the simulation, and we are given a convergent series of changes in fundamentals

{{{Ȧis,t+1,
˙̃
Diι,t+1}Ss=1}Ni=1}∞t=0 where limt→∞(Ȧist,

˙̃
Diι,t+1) = (1, 1) and observe baseline period values (List,Wiιst, Qit) ∀(s, i, ι).

G.2 Computing stationary steady-state equilibria

This section details the algorithm uses to compute stationary steady states for a given year’s observables under the
assumption of no further changes in fundamentals.

The algorithm starts by choosing some sufficiently large time period t + T , e.g. T = 100, at which the steady
state should have been reached. Then, we need to initialize a vector of utility growth U̇kst+2 for each city that is set
to 1 at time T and some reasonable starting value (e.g. one) at all other points in time. Then, run the following
loop until the path of populations and utility changes converges between iterations:

1. Initialize city population by group s in period t+1 as Lis,t+1 = `i,s,t+1 +
∑
j µ

ji
stLjst. Here, `it are exogenous

aggregate population changes, i.e. population changes not accounted for by domestic migration – which I
compute from the change in total IRS exemptions, assuming that the exogenous population change has the
same education distribution as the city itself in period t. For the steady-state computation, I assume that
the average exogenous population change of the previous 5 years continues for another 5 years and then
goes to zero. Then, use this together with the baseline population levels to compute L̇is,t+1 =

Lis,t+1

List
and

L̇i,t+1 =
∑
s Lis,t+1

Lit
.

2. Compute industry employment growth by skill group. Start by computing changes in industry choice shares
by education group, which can be done by using given contemporaneous wage changes together with past
industry employment shares

π̇isιt =
πisι,t−1Ẇ

a
iιt∑Nind

ι=1 πisι,tẆ a
iιt

Then, industry employment changes are given by

L̇isι,t+1 = π̇isιtL̇is,t+1, (49)

and levels can be updated by computing Lisι,t+1 = L̇isι,t+1Lisι,t and Li,ι,t+1 =
∑
s Lisι,t+1.

3. Update local industry-level wages by computing wage growth from agglomeration Ẇιi,t+1 = (L̇i,ι,t+1)η̃LD ,

and then applying it to the previous wage levels: Wιit = Ẇιi,t+1Wιit.

4. Aggregate the industry-level wage changes to changes in the overall wage option index for city i by using the
fact that

˙̃
W ist =

(∑
ι

πιist

(
Ẇιit

)a) 1
a

.

5. Update house prices by first computing updated housing expenditure

HDi,t+1 =
∑
ι

∑
s

αsWιi,t+1Lis,ι,t+1,

and housing expenditure growth ˙HDi,t+1 =
HDi,t+1

HDit
, and then computing house price growth as

Ṗi,t+1 =
(

˙HDi,t+1

)ηiH
6. Now, location utility growth is implicitly defined by

µiks,t+1 =
µikst(U̇kst+1)

1
θ∑N

j µ
ij
st(U̇

js
t+1)

1
θ

U̇ ist+1 = Ȧis,t+1Ẇis,t+1(Q̇i,t+1)−αs

(
N∑
k

µiks,t+1(U̇kst+2)
1
θ

)βθ
,
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assuming Q̇i,t+1 = Ṗi,t+1, and on the steady-state equilibrium path without endogenous amenities Ȧis,t+1 =
1. Substituting, we can write this as

U̇ ist+1 = Ȧis,t+1Ẇis,t+1(Q̇i,t+1)−αs

(
N∑
k

(
µikst(U̇kst+1)

1
θ∑N

j µ
ij
st(U̇

js
t+1)

1
θ

)
(U̇kst+2)

1
θ

)βθ
,

which defines a system of equations with N unknowns (the elements of the vector U̇ ist+1) and N equations,

as U̇kst+2 is taken as given within each iteration. This can be solved by an equation solver for the elements of

U̇ ist+1 that correspond to

U̇ ist+1

 N∑
j

µijst(U̇
js
t+1)

1
θ

βθ

− Ȧis,t+1Ẇis,t+1(Q̇i,t+1)−αs

(
N∑
k

µikst(U̇kst+1)
1
θ (U̇kst+2)

1
θ

)βθ
= 0 ∀i

7. Update U̇kst+2 based on the newly computed series of U̇ ist+1, but always setting it equal to one at time T .

This loop is repeated until the series U̇ ist+1 do not change anymore between iterations, which is equivalent to
population growth being the same across iterations. The allocation of populations in this economy at time T is
then the steady state.

G.3 Imputing historical mobility matrices and amenities

Based on an existing time series of utility growth from some time T1 forward, a mobility matrix at time T1 and a
full time series of within-period prices and population allocations, we can infer historical mobility matrices using
the following algorithm. which solves backwards for µikst ∀i, k and {Ȧist,t+1}, if we’re given µiks,t+1 ∀i, k, and (U̇ jst+2)

1
θ ,

and the time series of total population, wages and house prices for all past periods.

1. The location choice updating equation implicitly defines a system of equations that relates past migration
choices to future choices and future utility:

µikst =
µiks,t+1

(U̇kst+1)
1
θ

 N∑
j

µijst(U̇
js
t+1)

1
θ

 (50)

For simplicity, define Ṙwis,t+1 =
˙̃
W is,t+1(Q̇i,t+1)−αs as the real wage index. Then, we want to solve the utility

growth expression

U̇ ist+1 = Ȧis,t+1Ṙ
w
is,t+1

(
N∑
k

µiks,t+1(U̇kst+2)
1
θ

)βθ
,

jointly with equation 50 for the implied values of µikst ∀i, k and {Ȧis,t+1}. These equations implicitly define
period t migration flows as functions of unobservable amenity changes. Here, we have SN×(N+1) unknowns
(amenity changes for each location and group, and city-to-city flows for each group), and SN ×N equations,
so we need to impose an additional SN conditions to solve for the unknown variables.

To obtain these conditions, I first make use of the population constraints:

Lit =
S∑
s

List

Lis,t+1 = `i,t+1 +
N∑
k

µkistList,

which add the series of SN population levels by group to the unknowns, but provide (S + 1)N equations, so
we gain N additional constraints. To gain an additional N constraints, we could make additional assumptions
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regarding the amenity growth process – for instance, assuming Ȧks,t+1 = Ȧk,t+1 ∀k. However, as we are
interested in group differences in preferences for cities, this is not appropriate in this setting.

Instead, I make use of the fact that I have information on aggregate migration flows from IRS data for the
period where flows by education group are unavailable. Therefore, I can impose

µiit Lit =
S∑
s

µiistList.

That is, I constrain the number of people not moving in each group to add up to the known total number
of people staying in place. This yields an additional N constraints and allows me to identify the unknown
variables. As a result, these equations can be solved exactly for {µikst}i,k∈N and {Ȧi,t+1}i∈N .

2. Using these expressions, I solve for µikst ∀i, k and {Ȧist,t+1} in the following manner: , choose a candidate

vector {Ȧist,t+1} for each group s, and substitute into the expression for U̇ ist+1. Then, solve for µikst conditional

on U̇ ist+1. Evaluate the additional constraints on population sizes and gross migration rates for this mobility
matrix. Additionally, I impose the constraint that all population values have to be positive. Iterate on the
initial choice of {Ȧist,t+1} until all the constraints are met, using a nonlinear equation solver.

3. Once {µikst}i,k∈N and {Ȧit}i∈N . are known, we can compute U̇ ist+1 from the equation shown above.

4. This process is then repeated until some period T0 is reached.

Note that this imputation of mobility does not make use of any mobility data for periods before T1. Therefore, a
good check for the model fit is the comparison of partial or aggregate flows at T0 (or intermediate periods) between
locations to those implied by the backward simulation of the model.

G.4 Implementing counterfactual migration cost changes

In order to implement the counterfactual changes in migration costs, I start from a rewriting of the logit form for
the probability of deciding to relocate to any city k from city i given by Equation 14:

µikst =
exp(υkst )

1
θs τ̃ iks∑N

j exp(υjst )
1
θs τ̃ ijs

,

where τ̃ iks = exp(−τ iks )
1
θs is akin to a “migration discount factor” on the utility obtained from other locations.

Assume that this factor can be decomposed further into an element related to the personal and psychological cost
of leaving the current city of residence for any other location τ̃ ik,Leave

s , as well as a component related to the cost
of changing states τ̃ ik,State

s , and a bilateral component containing any other bilateral moving costs, including those
shown in the estimates in Table 2:

τ̃ iks = τ̃ ik,Leave
s · τ̃ ik,State

s · τ̃ ik,Other
s .

Moreover, the cost factors of leaving the current city and state are assumed to be the same, no matter which new
state or city is chosen, and set to one (i.e. no cost) if there is no change.

Then, the different migration cost scenarios in counterfactual 1 are implemented as follows: The “higher
mobility” scenario corresponds to an increase by a factor λcf1 > 1 in the valuation of locations outside of the
current city, i.e. I set

τ̃ ik,Leave
s,new = λcf1τ̃

ik,Leave
s,old

at the beginning of the simulated counterfactual time series. As a result, the baseline migration probabilities change
such that

µiks,new =
exp(υkst )

1
θs λcf1τ̃

ik
s,old

exp(υist )
1
θs +

∑N
j:j 6=i exp(υjst )

1
θs λcf1τ̃

ij
s,old

, ∀ k 6= i

Substituting from the definition of µiks,old, this is equivalent to

µiks,new =
λcf1µ

ik
s,old

µiis,old +
∑N
j:j 6=i λcf1µiks,old

∀ k 6= i.
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That is, this change in the fundamental migration cost is equivalent to scaling all observed migration probabilities
to other cities by the same factor and then rescaling to ensure migration probabilities add to one.

For the ”no inter-state migration” scenario, the implementation corresponds to setting the between-state mi-
gration cost component to infinity, i.e. the migration discount factor goes to zero:

τ̃ ik,State
s = 0 ⇔ statei 6= statek.

As a result, it will be the case that
µiks,new = 0 ⇔ statei 6= statek.

For the “no migration scenario” it is then the case that

τ̃ ik,Leave
s,new = 0 ⇔ i 6= k,

such that
µiks,new = 0 ⇔ i 6= k.

In Section 8.6, I consider the following scenarios: (A) The cost of leaving the current city of residence falls by
half (τ̃ ik,Leave

s doubles if i 6= k). (B) Inter-state migration costs become prohibitively large, i.e. τ̃ ik,State
s = 0 if i and

k are in different states. (C) Migration costs to any other city become prohibitively large (τ̃ ik,Leave
s = 0 if i 6= k).

Because of the direct mapping between migration costs and baseline migration probabilities, these scenarios are
implemented in my analysis as follows: (A) In the increased mobility scenario, I multiply all migration probabilities
µikst that represent leaving the origin city (so i 6= k) by 1.5 in order to represent a shock to moving costs that results
in an average increase of gross migration by 50%. (B) To implement the no-interstate migration scenario, I set all
migration shares µikst to zero if i and k are not in the same state. This is equivalent to distributing the migration
shares directed to out-of-state destinations between all in-state cities according to their relative share of original
migration flows. (C) To simulate no migration, I simply set µiist = 1 ∀i. In all scenarios, I reweight all moving
probabilities after the adjustment, so that they add to one.

H Supplementary Analyses

H.1 Descriptive analysis of drivers of city attractiveness over time

While persistent migration costs determine which cities are more likely to be part of the same migration network,
the variation over time in the level of migrant flows into or out of a city will depend on changes in the overall
attractiveness of that city. In order to get a descriptive sense of what factors correlate with migration flows, and
to supplement the causal effect estimates in Section 4, this section details non-causal estimates of the drivers of
bilateral flows between cities.

As a first pass at determining which city characteristics have been associated with more or less migration, I
take the destination city × year fixed effects obtained from the migration gravity regression shown in equation 1
and regress them on city characteristics, a national trend αt, and – in some specifications – a city fixed effect αj :

θjt = αt + αj + αw lnWjt + αP lnPjt + β′Xj + εijt

The included time-varying characteristics are the average local wage income (from the IRS), a quality-adjusted house
price index,115 and indices of local consumption amenities (constructed as principal components of the density of
establishments in leisure and consumption industries).116 In addition, I also include time-invariant measures of the
level of the cultural and natural amenities discussed in the previous section, and population density.

Column 1 of Table A7 shows the effect of these characteristics on the city attractiveness series obtained from
the 1990-2017 aggregate migration sample. Column 2 adds a city fixed effect, which absorbs the effect of any
unobserved time-invariant city characteristics. The results show that greater overall migration to a city destination

115I adjust the level of house prices for the quality of the housing stock in the year 2000, following Albouy and
Ehrlich (2018), and then use the FHFA repeat-sales index to adjust house prices for changes over time. See Appendix
F.7 for details.

116See Appendix F.4 for details
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Table A7: City attractiveness determinants

Sample: 1990-2017 2005-2017

All All Coll. Coll. Non-Coll. Non-Coll.
(1) (2) (3) (4) (5) (6)

Log Inc. per cap. 2.212*** 0.701*** 4.923*** 1.714*** 4.541*** 1.739***
(0.298) (0.095) (0.486) (0.299) (0.478) (0.312)

House price index (qual.-adj.) 0.699*** -0.202*** 0.677*** -1.142*** 0.653*** -1.215***
(0.121) (0.050) (0.211) (0.156) (0.205) (0.157)

Amenities index (1st PC) -0.378*** -0.011** -0.399** 0.030 -0.379** 0.030
(0.088) (0.005) (0.164) (0.022) (0.158) (0.021)

Amenities index (2nd PC) 0.291*** -0.030*** 0.441*** -0.072* 0.444*** -0.079**
(0.048) (0.010) (0.085) (0.039) (0.084) (0.039)

Water surface share 0.762* 0.786 0.831
(0.390) (0.655) (0.634)

Nontrad. Christ. Share 0.162 0.416 0.431*
(0.168) (0.265) (0.256)

Jan. Temperature 0.028*** 0.035*** 0.036***
(0.003) (0.006) (0.006)

College share (2000) 3.406* 0.949 -5.890*
(1.793) (3.169) (3.061)

Population density 0.436* 0.789** 0.565
(0.241) (0.399) (0.370)

Observations 19,208 19,208 9,308 9,308 9,308 9,308

Year FE X X X X X X
City FE X X X

Heteroskedasticity-robust standard errors clustered at the CZ level in parentheses: * p<0.10, ** p<0.05, *** p<0.01. The
table shows results from regressions where the dependent variable consists of CZ × year fixed effects from a migration
gravity regression. Analysis includes all continental U.S. CZs, excl. New Orleans, for which fixed effects could be computed,
leading to a total of 613 - 716 CZs in a given year. See text for description of the explanatory variables.
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is significantly correlated with higher average wages in the city. Moreover, I also find significantly positive effects
of a warmer climate, and there is weak evidence that greater density, college shares and water access are associated
with greater aggregate migration. Once constant unobservable city attractiveness is accounted for, house prices
show the expected negative sign in Column 2. Moreover, amenities in the form of consumption establishments have
a significant correlation with migration in both specifications.

These descriptive findings inform the empirical approach in later sections. In particular, this analysis suggests
that one needs to be wary of bias arising from time-varying changes in amenities, when estimating the effect of
wages and house prices on location choices.

Heterogeneity in correlates of city attractiveness. In columns 3 to 6, I analyse the determinants of
city attractiveness separately for the city-year fixed effects obtained from migration flows by education group. The
estimates in columns 3 and 5 show that the main differences between the two education groups are that only
college-educated workers are significantly more likely to migrate into denser cities, while the college share has a
weak negative effect on migration of non-college workers. In this descriptive analysis, I only find small differences in
wage and house price correlations with migration by education group. However, comparing the aggregate migration
coefficients and the separate estimates by education group shows that composition bias might lead to very different
estimates when taking into account the subgroup heterogeneity.117 The quantitative model in a later section will
account for this subgroup heterogeneity, as well as the effect of observed and unobserved changes in amenities when
trying to estimate the location choice parameters.

H.2 Migration links as predictors of inter-city house price correlation:
horserace regressions

In Section 4.3.2, I built on the analysis in Sinai and Souleles (2013) and showed that migration links perform
well as predictors for bilateral correlations in house price growth between cities when compared to other measures
individually. In this section, I provide further details on the alternative link measures and show that migration
links are strong predictors of house price correlation even when controlling for all the alternative links jointly in
horserace regressions.

To put the ability of migration links to predict house price correlations in context, I consider a number of
alternative measures of inter-city links: First, I include an inverse-distance weighted measure that represents the
notion that house price correlations might stem from shocks that are common among cities that are geographically
close to one another.

Second, I consider a social connectedness index (SCI) based on Facebook friendship links between geographic
areas that was introduced in Bailey et al. (2018b). In a related paper, Bailey et al. (2018a) showed that differences
in individual exposure through online social networks to house price movements in distant counties can predict
differences in housing investment decisions. To measure the importance of this alternative channel, I use weights
based on the SCI measure to construct a social network-weighted measure of house price correlations.118

Third, I construct a destination population-weighted measure of house price correlations to control for the
possibility that the migration weights are simply picking up the fact that large cities have more migration links and
might be driving the housing cycle of smaller cities.

Fourth, I explore the possibility that house price correlations reflect similarity in industry structure between
cities. To measure industry structure differences, I compute the vector distance in 2-digit NAICS industry employ-
ment shares by city, and use the inverse of this distance to measure similarity in industry structures.

Fifth, I include an equal-weighted measure that simply reflects a city’s average correlation with other cities’
house prices.

We can test the predictive ability of these different city links more formally by estimating the regression model

corr(∆ lnPi,∆ lnPk) = α+ β1MigSharei→k + β2 ln distik + β3SCIik + β4IndDistikθi + θk + εik,

117Note that the full sample estimates also differ in the sample period, in addition to varying the level of aggrega-
tion. However, in regressions not reported here, I find that even when restricting the aggregate sample to 2005-2017,
the estimates differ from the subgroup estimates.

118The SCI index measures the relative probabilities of friendship links between counties (normalized for their
respective Facebook user base) – which I aggregate to the commuting zone level, and then normalize for each CZ
such that the weights for all other CZs sum to one.
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which represents a horserace between migration links, distance, social networks, and industry structure in explaining
variation in house price correlations across CZs.

Table A8: City links and house price growth correlation

Dependent variable: House price growth correlation coeff. × 100

(1) (2) (3) (4)

Panel A: Full migration network

Migration outflow share 83.276*** 69.339*** 8.165** 10.378***
(5.415) (4.372) (3.597) (3.568)

Log distance (miles) -5.846*** -5.405***
(0.216) (0.211)

Social Connectness Index 10.327 10.145
(7.347) (7.268)

Industry structure similarity 22.573***
(2.446)

Observations 516,241 516,241 516,241 516,241
R-squared 0.00 0.65 0.67 0.68

Panel B: Distance > 150 mi.

Migration outflow share 235.132*** 150.743*** 72.698** 66.976**
(80.653) (50.749) (29.852) (27.499)

Log distance (miles) -4.812*** -4.310***
(0.242) (0.243)

Social Connectness Index 611.968*** 602.176***
(69.872) (70.143)

Industry structure similarity 22.413***
(2.446)

Observations 495,554 495,554 495,554 495,554
R-squared 0.00 0.66 0.67 0.68
Origin FE X X X
Destination FE X X X

Heteroskedasticity-robust standard errors two-way clustered at the origin and destination CZ level in parentheses: * p<0.10,
** p<0.05, *** p<0.01. Correlations in house prices growth and average outmigration shares are calculated over 1990-2017.
Data contains pairs of all 721 continental U.S. CZs, excl. New Orleans, that have any known outmigration flows.

The results are shown in Appendix Table A8. Going from left to right, the columns add in alternative measures
of inter-city links as well as origin and destination city fixed effects that capture the overall tendency of cities to be
more connected (e.g. due to city size). As the table shows, migration flows have a significant positive association
with the correlation in house prices. Moreover, this relationship is robust to controlling for spatial correlation due
to geographic proximity as well as variation associated with social network links and industry similarity. Panel A
shows the results for the full migration network whereas Panel B limits the sample to those city pairs which are at
least 150 miles apart, which corresponds to the long-distance migration network used in my baseline regressions.

Even in the most stringent specifications in column 4, migration links continue to be significant predictors of
house price correlations. That is, migration links contain information about city house price connections that go
beyond the set of links represented by the other links included in the regressions.

The estimated (non-causal) coefficient in Column 4 for the long-distance network indicates that a 10 ppt greater
share of migrants from city i going to city k is associated with a 6.7 ppt higher correlation in house price growth
between the cities, holding constant the city’s co-movement with house prices overall. Incidentally, this is similar
to the long-run house price spillover estimates found in the baseline reduced form regressions.

Trade flows and migration flows. In the graphs showing the individual power of different measures of links
in predicting pair-wise house price correlations, I also show results using a measure of trade flow links between
cities that represents industry linkages and the propagation of economic shocks through input-output networks (see
Appendix Section F.9 for details on how this measure is constructed). However, this measure is only available
for a limited subsample corresponding to less than 10% of the pairwise links and is therefore not included in
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Figure A16: Trade flows and migration flows by location pair. Panel (a) shows the value of 2012
log gross migration flows (sum of flows in both directions) over the log gross value of 2012 trade flows (in both
directions) for each pair of CFS areas. Panel (b) shows the same variables but residualized with regard to the log
sum of populations of the location pair in the year 2000 as a proxy for city sizes. The size of location pair markers
is shown proportional to the joint population size of the pair, and the graphs also show the unweighted line of best
fit.

(a) Raw flows (b) Resid. w.r.t. population size

the regressions. In unreported regressions, I find that, on that limited sample, migration links are significant in
predicting house price correlations when controlling for trade flow links.

In order to further explore the degree to which migration links overlap with trade flows, consider Appendix Fig-
ure A16, where I show how gross migration flows and the value of trade flows are correlated for pairs of Commodity
Flow Statistics areas (which are on average somewhat larger than CZs). This data is available for all connections
between 70 CFS areas, (although the graphs drop any pairs of locations that have no migration flows or no trade
flows).

As the graphs show, while there is a relatively high R-squared of 34% between migration flows and the value of
trade flows between two locations in the raw data, this correlation is to a large degree driven by the fact that large
cities are more likely to trade and have migration flows with any other city. Once I adjust for the joint population
size in each location pair, the R-squared is only 12%. In conjunction with the fact that – as shown in Figure 10
– migration links are a better predictor of house price correlations than trade flows, this makes it unlikely that
migration links are merely a proxy for trade links that are truly driving the observed house price spillover effects.

H.3 Reasons for moving and demographics of movers

In order to understand better which demographics are driving migration patterns in the U.S., this section will use
data from the Current Population Survey (CPS) to explore the characteristics of U.S. migrants.

Reasons for moving. First, I consider the reasons stated by survey respondents who moved in the last year
when asked why they were moving. I group the CPS response categories into “family reasons” (change in marital
status; establishing own household; other family reasons), “employment reasons” (new job or job transfer; to look
for work or lost job; to be closer to work/easier commute; other job-related reason), “retirement”, and “housing
reasons” (wanted to own home, not rent; wanted new or better house/ apartment; wanted better neighborhood/less
crime; wanted cheaper housing; foreclosure/eviction; other housing reason). I omit move reasons due to college
attendance, climate, health, or disaster, which the CPS groups under “other reasons”. For each category of reasons,
I compute the share of the total population with available moving status that moved for that reason - distinguishing
between all moves and moves across county boundaries.

The patterns for moving reasons are shown in Appendix Figure A17, in Panels (a) and (b). As the time series
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show, housing reasons are the most important reason for moving by far when I include within-county moves in the
tabulation in Panel (a), followed by family reasons and employment reasons. When I consider only “long-distance”
moves that cross county boundaries, housing, employment and family reasons are of similar importance. In either
category of moves, moves due to retirement play a negligible role in mobility. The time pattern of migration being
correlated with housing booms and busts is reflected in the fact that moves for any reason are higher in the early
2000s and 2010s than in the late 2000s. However, it is important to note that this is mostly driven by the cyclicality
of moves for housing reasons. This provides support for the idea that migration cycles are an important consequence
and component of housing cycles rather than being driven by changes in employment opportunities that coincide
with housing booms.

It is important to note the limitations of this analysis: in a spatial equilibrium setting with Rosen-Roback style
preferences, like the model in this paper, residents jointly consider the effect of employment, housing, family and
other amenities on their utility in deciding whether or not to change locations – so there is no clear sense in which
either of these elements is the cause of their move. However, if we assume that respondents take the survey to be
asking about which of these elements had been changing the most to occasion their change in location preference,
then the prominent role of housing provides qualitative evidence of the proposed migration spillover mechanism
where house price changes lead to migration in search of more affordable housing during housing booms.

Employment status of long-distance movers. Next, I consider the employment status of movers. In line
with the paper’s focus on moves across cities, I focus on inter-county movers. I retain all CPS respondents who
moved across county lines and have an employment status (which drops children, for instance), and are not in the
armed forces. Then, I compute the number of movers in 3 non-overlapping and exhaustive categories: (1) Employed
(both at work currently and not currently at work); (2) Unemployed, or not in the labor force (“NILF”), but not
retired; (3) NILF and retired. The share of inter-county movers in each employment category is shown in Panel (c)
of Appendix Figure A17. Around 60% of all movers are employed (when being surveyed after their move), less than
10% are retired, and the remainder are unemployed or out of the labor force but not retired. This aggregate pattern
is particularly important when evaluating anecdotal evidence about particular city pairs with strong migration
links. For example, it is possible that a greater number of movers from New York City to Florida are retirees than
for other city pairs, but given that retirees represent a very small share of migration overall, it is unlikely that they
represent the majority share of moves even for this city pair. More generally, it is unlikely that retirement location
preferences play a major role in explaining the migration spillover patterns documented in this paper.

Age structure of long-distance movers. I next consider the age structure of long-distance movers, grouping
CPS respondents by age, and omitting those less than 20 years old. The age shares of movers are shown in Panel (d)
of Appendix Figure A17. The time series show that mobility declines precipitously with age: while the population
share of those aged 40 years and older is larger than that of those under 40, their combined share of long-distance
migration is less than half that of the younger group. While there is a gentle upward slope in the migration share
of older groups, this can likely be explained by their increasing population share over this time period. As a result,
when we are thinking about migration patterns, they are likely to be driven predominantly by the decisions of the
younger working-age population.

H.4 Stationary steady-state equilibrium example: year 2005 data

As examples of what the stationary steady state equilibria look like, I compare the underlying observed data for
2005 to the eventual SSE starting at 2005.

I first map the baseline of the actual college share in 2005 and house price growth 1990-2005 in each CZ in
the continental U.S, which is shown in Panels A and B of Figure A18. The maps show that college shares were
particularly high in 2005 in metropolitan areas across the U.S., and in the coastal areas of New England, Florida,
and California, while house price growth up to the peak of the boom was concentrated in the Northwest, Florida,
and the Atlantic Coast.

Then, to illustrate the steady state concept of the economy “settling” into equilibrium based on the observed
characteristics in a given year, I map the changes between the observables for 2005 and the steady state values
for 2005 in house prices and college shares in Panels C and D of Figure A18. The maps show that on the path
to the steady state equilibrium consistent with 2005 observables, college shares are predicted to increase further in
many areas where they were already high. In addition, college shares are predicted to increase in some low-college
share areas, in particular Nevada and Arizona, as well as the Pacific Northwest. These predicted changes between
2005 actuals and the 2005-implied steady state can be interpreted as the equilibrium that the 2005 disequilibrium
values were moving towards and would reach if no other shocks occurred. It’s important to distinguish this from
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Figure A17: Reason for moving and demographics of movers (CPS). The data shown in the graphs
below comes from the Current Population Survey March Supplement. Panel (a) shows the share of the U.S.
population moving for the stated reason, omitting the category of “other reasons”. Panel (b) considers only “long-
distance” moves that cross county boundaries. Panel (c) shows the share of inter-county movers by employment
status, distinguishing between the employed, retirees and the remainder of workers who are unemployed or not in
the labor force. The analysis excludes workers in the armed force or where employment status is not reported.
Panel (d) groups respondents by their age and plots shares of total inter-county migration for each age group.

(a) Reason for moving: all movers (b) Reason for moving: inter-county movers

(c) Inter-county mig. by employment status (d) Inter-county mig. by age
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Figure A18: Stationary steady-state equilibrium example: 2005. The map in Panel A and Panel B plot
actual FHFA repeat-sales house price index growth 1990-2005 and college population shares in 2005 as the historical
observables before the transition to the stationary steady state is computed. The maps in Panels C and D then
plot the growth rate in college shares and house prices in the model-predicted steady state equilibrium consistent
with 2005 observables relative to the actual values in 2005. All maps display values for 512 Adjusted CZs overlayed
on 721 continental U.S. CZs, omitting New Orleans.

(a) College shares in 2005 (b) House price growth 1990-2005

(c) College share growth: 2005 SSE vs. 2005
Actuals

(d) House price growth: 2005 SSE vs. 2005
Actuals

the predicted path of the actual economy: by design the steady-state equilibrium for 2005 does not account for the
fact that a financial crisis and the Great Recession were about to hit the U.S. economy a few years later.

H.5 Superstar cities and displacement during the 2000-2007 boom

In this section, I explore how the shifts in educational composition accompanying housing booms that are docu-
mented in Section 4.2.3 played out during the 2000-2007 housing boom for superstars and migration spillover cities
in particular. First, the relationship between population growth and changes in the college share is plotted for all
large CZs in the left panel of Appendix Figure A19. While all large CZs saw an increase in their college share during
this period,119 this compositional shift was more pronounced among cities with low population growth. That is,
cities that were growing slowly overall, saw a more rapid displacement of non-college workers by college-educated
workers. That much of this displacement is associated with crowding out due to housing supply constraints is
suggested by the fact that most of the supply-constrained superstar cities experienced high increases in their college
share.

119This is in part driven by the fact that the share of the college-educated population in the U.S. has continued to
grow nationally over the last two decades, albeit more slowly than in previous decades (Autor et al., 2020). Another
factor is the greater preference of college-educated workers for large cities relative to non-college educated workers
(Couture and Handbury, 2017).
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Figure A19: Displacement for superstars. The graph plots average population growth and the change in
the college-educated population share over 2000-2007 in the left panel, and changes in the college share and the
ratio of house price growth to population growth for the same period in the right panel. Data shown contains
45 CZs on the left, consisting of all continental U.S. CZs, excl. New Orleans, with year 2000 Census population
> 0.85M , and corresponding to ∼ 50% of the continental U.S. adult population. Right panel additionally excludes
2 CZs with negative population growth from the graph for better visibility.

Moreover, most of the migration spillover cities are well above the line of best fit for composition changes. That
is, their college shares increased faster than would be expected, relative to other large cities, given their overall
population growth.

Next, we can see whether the shift towards a highly educated – and on average higher-income – population can
explain the high house price growth seen in superstar and migration spillover cities. In the right panel of Appendix
Figure A19, I plot the ratio of house price growth to population growth – as a measure of the slope of the house
price response to demand shocks – over the change in the local college share.

The graph shows a strong positive relationship between the degree to which house prices respond to population
growth, and the composition of that population growth: if the increase in population involves a greater displace-
ment of low-income residents by high-income residents (here proxied by education levels), then house price growth
increases more. In fact, even though we saw before that most of the migration spillover cities experience high levels
of house price growth relative to their population growth during the housing boom, this is more than explained by
the accompanying shift in demographic composition.

These analyses suggest a mechanism where demographic changes can complement the house price effects of
migration spillovers. For instance, focusing again on Las Vegas and Phoenix as salient examples, the left panel
shows that they saw relatively large shifts in education levels for their level of population growth. The right panel
confirms that the degree to which house prices responded to population growth in these two cities was, if anything,
less than might be expected once we take into account their rapid demographic shift towards a more college-educated
population.
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